TY - JOUR
T1 - Recruitment of a foreign quinone into the A1 site of photosystem I
T2 - Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone
AU - Sakuragi, Yumiko
AU - Zybailov, Boris
AU - Shen, Gaozhong
AU - Bryant, Donald A.
AU - Golbeck, John H.
AU - Diner, Bruce A.
AU - Karygina, Irina
AU - Pushkar, Yulia
AU - Stehlik, Dietmar
PY - 2005/4/1
Y1 - 2005/4/1
N2 - A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.
AB - A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.
UR - http://www.scopus.com/inward/record.url?scp=16844377773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=16844377773&partnerID=8YFLogxK
U2 - 10.1074/jbc.M412943200
DO - 10.1074/jbc.M412943200
M3 - Article
C2 - 15681848
AN - SCOPUS:16844377773
SN - 0021-9258
VL - 280
SP - 12371
EP - 12381
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -