Recruitment of a foreign quinone into the A1 site of photosystem I

Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone

Yumiko Sakuragi, Boris Zybailov, Gaozhong Shen, Donald Ashley Bryant, John H. Golbeck, Bruce A. Diner, Irina Karygina, Yulia Pushkar, Dietmar Stehlik

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.

Original languageEnglish (US)
Pages (from-to)12371-12381
Number of pages11
JournalJournal of Biological Chemistry
Volume280
Issue number13
DOIs
StatePublished - Apr 1 2005

Fingerprint

Plastoquinone
Synechococcus
Photosystem I Protein Complex
Genetic Recombination
Binding Sites
Anthraquinones
Quinones
Chlorophyll
Washing
Paramagnetic resonance
Genes
benzoquinone
9,10-anthraquinone
Polarization
Peptides
Kinetics
Temperature

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{a61796f2cb354688914f9e578b2a83c8,
title = "Recruitment of a foreign quinone into the A1 site of photosystem I: Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone",
abstract = "A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.",
author = "Yumiko Sakuragi and Boris Zybailov and Gaozhong Shen and Bryant, {Donald Ashley} and Golbeck, {John H.} and Diner, {Bruce A.} and Irina Karygina and Yulia Pushkar and Dietmar Stehlik",
year = "2005",
month = "4",
day = "1",
doi = "10.1074/jbc.M412943200",
language = "English (US)",
volume = "280",
pages = "12371--12381",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "13",

}

TY - JOUR

T1 - Recruitment of a foreign quinone into the A1 site of photosystem I

T2 - Characterization of a menB rubA double deletion mutant in Synechococcus sp. PCC 7002 devoid of FX, FA, and FB and containing plastoquinone or exchanged 9,10-anthraquinone

AU - Sakuragi, Yumiko

AU - Zybailov, Boris

AU - Shen, Gaozhong

AU - Bryant, Donald Ashley

AU - Golbeck, John H.

AU - Diner, Bruce A.

AU - Karygina, Irina

AU - Pushkar, Yulia

AU - Stehlik, Dietmar

PY - 2005/4/1

Y1 - 2005/4/1

N2 - A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.

AB - A photosystem I (PS I) complex containing plastoquinone-9 (PQ-9) but devoid of FX, FB, and FA was isolated and characterized from a mutant strain of Synechococcus sp. PCC 7002 in which the menB and rubA genes were insertionally inactivated. In isolated PS I trimers, the decay of P700+ measured in the near-IR and the decay of A 1- measured in the near-UV were found to be biphasic, with (averaged) room temperature lifetimes of 12 and 350 μs. The decay-associated spectra of both kinetic phases are characteristic of the oxidized minus reduced difference spectrum of a semiquinone, consistent with charge recombination between P700+ and PQ-9-. The amplitude of the flash-induced absorbance changes in both the near-IR and the near-UV show that approximately one-half of the A1 binding sites are either empty or nonfunctional. A spin-polarized chlorophyll triplet is observed by time-resolved EPR, and it is attributed to the 3P700 product of P700 +A0- charge recombination via the T0 spin level in those PS I complexes that do not contain a functional quinone. In those A1 sites that are occupied, the P700+Q- polarization pattern indicates that PQ-9 is oriented in a similar manner to that in the menB mutant. When excess 9,10-anthraquinone is added in vitro, it displaces PQ-9 and occupies the A1 binding site more readily than in the menB mutant. This can be explained by a greater accessibility to the A 1 site in the menB rubA mutant due to the absence of FX and the stromal ridge polypeptides. The relatively low binding affinity of 9,10-anthraquinone allows it to be readily removed from the A1 site by washing. However, all A1 sites are shown to bind napthoquinones with high affinity and thus are proven to be functionally competent in quinone binding. The ability to readily displace PQ-9 from, the A1 site makes the menB rubA mutant ideal for introducing novel quinones, particularly anthraquinones, into PS I.

UR - http://www.scopus.com/inward/record.url?scp=16844377773&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=16844377773&partnerID=8YFLogxK

U2 - 10.1074/jbc.M412943200

DO - 10.1074/jbc.M412943200

M3 - Article

VL - 280

SP - 12371

EP - 12381

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 13

ER -