Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7-11 as the essential pentapeptide

J. F. Dice, Hui-ling Chiang, E. P. Spencer, J. M. Backer

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

We have identified a pentapeptide region of microinjected ribonuclease A that is required for enhanced degradation of this protein during serum withdrawal. We introduced reductively methylated [3H]ribonuclease A, [3H]ribonuclease S-protein (residues 21-124), and [3H]ribonuclease S-peptide (residues 1-20) into the cytosol of human fibroblasts by red cell-mediated microinjection and osmotic lysis of pinosomes. The degradative rates of ribonuclease A and ribonuclease S-peptide are increased 2-fold upon withdrawal of serum, while catabolism of ribonuclease S-protein is not regulated in this manner. Certain fragments of ribonuclease S-peptide are also degraded in a serum-dependent fashion (residues 1-14 and 4-13), while other fragments are not (residues 1-10 and 2-8). [3H]Ribonuclease S-peptide is cleaved into two smaller radioactive peptides during loading into red cell ghosts. We tentatively identified the larger fragment as residues 7-11 based on its molecular weight determined by Sephadex chromatography in the presence of 8 M urea combined with sequential Edman degradation to identify the position of radioactive lysines. The smaller peptide fragment appears to be the amino-terminal dipeptide, Lys-Glu, and/or residues 7-8, Lys-Phe. After microinjection into fibroblasts, the pentapeptide is degraded at an enhanced rate in the absence of serum, while degradation of the dipeptide is not affected. We confirmed that residues 7-11 constitute the larger hydrolysis product of S-peptide by synthesizing this pentapeptide and radiolabeling it by reductive methylation. It migrated at the expected position after Sephadex chromatography in 8 M urea and was further hydrolyzed only slightly during loading into red cells. Finally, degradation of this pentapeptide after injection into fibroblasts was enhanced 2-fold upon serum withdrawal. These results, combined with our other recent studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that the pentapeptide, Lys-Phe-Glu-Arg-Gln, targets microinjected ribonuclease A to lysosomes for enhanced degradation during serum deprivation.

Original languageEnglish (US)
Pages (from-to)6853-6859
Number of pages7
JournalJournal of Biological Chemistry
Volume261
Issue number15
StatePublished - Dec 1 1986

Fingerprint

Pancreatic Ribonuclease
Degradation
Fibroblasts
Serum
Dipeptides
Cells
Microinjections
Chromatography
lysylphenylalanine
lysylglutamic acid
Urea
Peptides
Peptide Fragments
Proteins
Methylation
Erythrocyte Membrane
Lysosomes
Cytosol
Proteolysis
Lysine

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

@article{944ccc403d9342b690eac34c77d9882d,
title = "Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7-11 as the essential pentapeptide",
abstract = "We have identified a pentapeptide region of microinjected ribonuclease A that is required for enhanced degradation of this protein during serum withdrawal. We introduced reductively methylated [3H]ribonuclease A, [3H]ribonuclease S-protein (residues 21-124), and [3H]ribonuclease S-peptide (residues 1-20) into the cytosol of human fibroblasts by red cell-mediated microinjection and osmotic lysis of pinosomes. The degradative rates of ribonuclease A and ribonuclease S-peptide are increased 2-fold upon withdrawal of serum, while catabolism of ribonuclease S-protein is not regulated in this manner. Certain fragments of ribonuclease S-peptide are also degraded in a serum-dependent fashion (residues 1-14 and 4-13), while other fragments are not (residues 1-10 and 2-8). [3H]Ribonuclease S-peptide is cleaved into two smaller radioactive peptides during loading into red cell ghosts. We tentatively identified the larger fragment as residues 7-11 based on its molecular weight determined by Sephadex chromatography in the presence of 8 M urea combined with sequential Edman degradation to identify the position of radioactive lysines. The smaller peptide fragment appears to be the amino-terminal dipeptide, Lys-Glu, and/or residues 7-8, Lys-Phe. After microinjection into fibroblasts, the pentapeptide is degraded at an enhanced rate in the absence of serum, while degradation of the dipeptide is not affected. We confirmed that residues 7-11 constitute the larger hydrolysis product of S-peptide by synthesizing this pentapeptide and radiolabeling it by reductive methylation. It migrated at the expected position after Sephadex chromatography in 8 M urea and was further hydrolyzed only slightly during loading into red cells. Finally, degradation of this pentapeptide after injection into fibroblasts was enhanced 2-fold upon serum withdrawal. These results, combined with our other recent studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that the pentapeptide, Lys-Phe-Glu-Arg-Gln, targets microinjected ribonuclease A to lysosomes for enhanced degradation during serum deprivation.",
author = "Dice, {J. F.} and Hui-ling Chiang and Spencer, {E. P.} and Backer, {J. M.}",
year = "1986",
month = "12",
day = "1",
language = "English (US)",
volume = "261",
pages = "6853--6859",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "15",

}

Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7-11 as the essential pentapeptide. / Dice, J. F.; Chiang, Hui-ling; Spencer, E. P.; Backer, J. M.

In: Journal of Biological Chemistry, Vol. 261, No. 15, 01.12.1986, p. 6853-6859.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7-11 as the essential pentapeptide

AU - Dice, J. F.

AU - Chiang, Hui-ling

AU - Spencer, E. P.

AU - Backer, J. M.

PY - 1986/12/1

Y1 - 1986/12/1

N2 - We have identified a pentapeptide region of microinjected ribonuclease A that is required for enhanced degradation of this protein during serum withdrawal. We introduced reductively methylated [3H]ribonuclease A, [3H]ribonuclease S-protein (residues 21-124), and [3H]ribonuclease S-peptide (residues 1-20) into the cytosol of human fibroblasts by red cell-mediated microinjection and osmotic lysis of pinosomes. The degradative rates of ribonuclease A and ribonuclease S-peptide are increased 2-fold upon withdrawal of serum, while catabolism of ribonuclease S-protein is not regulated in this manner. Certain fragments of ribonuclease S-peptide are also degraded in a serum-dependent fashion (residues 1-14 and 4-13), while other fragments are not (residues 1-10 and 2-8). [3H]Ribonuclease S-peptide is cleaved into two smaller radioactive peptides during loading into red cell ghosts. We tentatively identified the larger fragment as residues 7-11 based on its molecular weight determined by Sephadex chromatography in the presence of 8 M urea combined with sequential Edman degradation to identify the position of radioactive lysines. The smaller peptide fragment appears to be the amino-terminal dipeptide, Lys-Glu, and/or residues 7-8, Lys-Phe. After microinjection into fibroblasts, the pentapeptide is degraded at an enhanced rate in the absence of serum, while degradation of the dipeptide is not affected. We confirmed that residues 7-11 constitute the larger hydrolysis product of S-peptide by synthesizing this pentapeptide and radiolabeling it by reductive methylation. It migrated at the expected position after Sephadex chromatography in 8 M urea and was further hydrolyzed only slightly during loading into red cells. Finally, degradation of this pentapeptide after injection into fibroblasts was enhanced 2-fold upon serum withdrawal. These results, combined with our other recent studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that the pentapeptide, Lys-Phe-Glu-Arg-Gln, targets microinjected ribonuclease A to lysosomes for enhanced degradation during serum deprivation.

AB - We have identified a pentapeptide region of microinjected ribonuclease A that is required for enhanced degradation of this protein during serum withdrawal. We introduced reductively methylated [3H]ribonuclease A, [3H]ribonuclease S-protein (residues 21-124), and [3H]ribonuclease S-peptide (residues 1-20) into the cytosol of human fibroblasts by red cell-mediated microinjection and osmotic lysis of pinosomes. The degradative rates of ribonuclease A and ribonuclease S-peptide are increased 2-fold upon withdrawal of serum, while catabolism of ribonuclease S-protein is not regulated in this manner. Certain fragments of ribonuclease S-peptide are also degraded in a serum-dependent fashion (residues 1-14 and 4-13), while other fragments are not (residues 1-10 and 2-8). [3H]Ribonuclease S-peptide is cleaved into two smaller radioactive peptides during loading into red cell ghosts. We tentatively identified the larger fragment as residues 7-11 based on its molecular weight determined by Sephadex chromatography in the presence of 8 M urea combined with sequential Edman degradation to identify the position of radioactive lysines. The smaller peptide fragment appears to be the amino-terminal dipeptide, Lys-Glu, and/or residues 7-8, Lys-Phe. After microinjection into fibroblasts, the pentapeptide is degraded at an enhanced rate in the absence of serum, while degradation of the dipeptide is not affected. We confirmed that residues 7-11 constitute the larger hydrolysis product of S-peptide by synthesizing this pentapeptide and radiolabeling it by reductive methylation. It migrated at the expected position after Sephadex chromatography in 8 M urea and was further hydrolyzed only slightly during loading into red cells. Finally, degradation of this pentapeptide after injection into fibroblasts was enhanced 2-fold upon serum withdrawal. These results, combined with our other recent studies (McElligott, M.A., Miao, P., and Dice, J.F. (1985) J. Biol. Chem. 260, 11986-11993), suggest that the pentapeptide, Lys-Phe-Glu-Arg-Gln, targets microinjected ribonuclease A to lysosomes for enhanced degradation during serum deprivation.

UR - http://www.scopus.com/inward/record.url?scp=0022852272&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022852272&partnerID=8YFLogxK

M3 - Article

VL - 261

SP - 6853

EP - 6859

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 15

ER -