Regulation of IGF binding protein-1 in Hep G2 cells by cytokines and reactive oxygen species

Charles H. Lang, Gerald J. Nystrom, Robert A. Frost

Research output: Contribution to journalArticle

77 Citations (Scopus)

Abstract

The liver is a major site of synthesis for insulin-like growth factor binding protein (IGFBP)-1. Because IGFBP-1 inhibits many anabolic actions of IGF-I, increases in IGFBP-1 may be partly responsible for the decrease in lean body mass observed in catabolic/inflammatory conditions. This study aimed to determine in Hep G2 cells 1) the sensitivity of IGFBP-1 synthesis to treatment with interleukin (IL)-1, tumor necrosis factor-α (TNF-α), and IL- 6, 2) the ability of reactive oxygen species (ROS) to enhance IGFBP-1 production, and 3) the role of ROS in mediating cytokine-induced increases in IGFBP-1. Hep G2 cells responded to IL-1 β, TNF-α, and IL-6 with maximal 8- to 10-fold increases in IGFBP-1 production. Although the maximal responsiveness of cells treated with TNF-α and IL-6 was 20-30% less than that with IL-1β, cells demonstrated a similar sensitivity to all cytokines (half-maximal responsive dose of ~10 ng/ml). A low concentration (3 ng/ml) of all three cytokines had an additive effect on IGFBP-1 production. Cytokines also increased IGFBP-1 mRNA. The half-life of IGFBP-1 mRNA was ~4 h and not altered by IL-1β. Incubation with ROS, including H2O2 and nitric oxide (NO) donors, resulted in a relatively smaller increase in IGFBP-1. However, preincubating Hep G2 cells with various free radical scavengers and NO synthase and eicosanoid inhibitors failed to prevent or attenuate cytokine-induced increases in IGFBP-1. Finally, preincubating cells with pyrrolidinedithiocarbamate (PDTC) but not SN50 (inhibitors of nuclear factor- κB activation and nuclear translocation, respectively) attenuated increases in IGFBP-1 induced by IL-1. These results indicate that 1) proinflammatory cytokines directly enhance IGFBP-1 synthesis by stimulating transcription without altering mRNA stability, 2) addition of exogenous ROS also stimulates IGFBP-1 production but to a smaller extent than cytokines, and 3) the cytokine-induced increase in IGFBP-1 production is not mediated by endogenous production of ROS or eicosanoids but appears to at least partially involve a PDTC-sensitive pathway.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume276
Issue number3 39-3
StatePublished - 1999

Fingerprint

Insulin-Like Growth Factor Binding Protein 1
Hep G2 Cells
Reactive Oxygen Species
Cytokines
Interleukin-1
Interleukin-6
Eicosanoids
Tumor Necrosis Factor-alpha
Messenger RNA
Insulin-Like Growth Factor Binding Protein 3
Free Radical Scavengers
Nitric Oxide Donors
RNA Stability

All Science Journal Classification (ASJC) codes

  • Gastroenterology
  • Physiology
  • Physiology (medical)

Cite this

@article{86b1884261fb49d6899f1e522222bec8,
title = "Regulation of IGF binding protein-1 in Hep G2 cells by cytokines and reactive oxygen species",
abstract = "The liver is a major site of synthesis for insulin-like growth factor binding protein (IGFBP)-1. Because IGFBP-1 inhibits many anabolic actions of IGF-I, increases in IGFBP-1 may be partly responsible for the decrease in lean body mass observed in catabolic/inflammatory conditions. This study aimed to determine in Hep G2 cells 1) the sensitivity of IGFBP-1 synthesis to treatment with interleukin (IL)-1, tumor necrosis factor-α (TNF-α), and IL- 6, 2) the ability of reactive oxygen species (ROS) to enhance IGFBP-1 production, and 3) the role of ROS in mediating cytokine-induced increases in IGFBP-1. Hep G2 cells responded to IL-1 β, TNF-α, and IL-6 with maximal 8- to 10-fold increases in IGFBP-1 production. Although the maximal responsiveness of cells treated with TNF-α and IL-6 was 20-30{\%} less than that with IL-1β, cells demonstrated a similar sensitivity to all cytokines (half-maximal responsive dose of ~10 ng/ml). A low concentration (3 ng/ml) of all three cytokines had an additive effect on IGFBP-1 production. Cytokines also increased IGFBP-1 mRNA. The half-life of IGFBP-1 mRNA was ~4 h and not altered by IL-1β. Incubation with ROS, including H2O2 and nitric oxide (NO) donors, resulted in a relatively smaller increase in IGFBP-1. However, preincubating Hep G2 cells with various free radical scavengers and NO synthase and eicosanoid inhibitors failed to prevent or attenuate cytokine-induced increases in IGFBP-1. Finally, preincubating cells with pyrrolidinedithiocarbamate (PDTC) but not SN50 (inhibitors of nuclear factor- κB activation and nuclear translocation, respectively) attenuated increases in IGFBP-1 induced by IL-1. These results indicate that 1) proinflammatory cytokines directly enhance IGFBP-1 synthesis by stimulating transcription without altering mRNA stability, 2) addition of exogenous ROS also stimulates IGFBP-1 production but to a smaller extent than cytokines, and 3) the cytokine-induced increase in IGFBP-1 production is not mediated by endogenous production of ROS or eicosanoids but appears to at least partially involve a PDTC-sensitive pathway.",
author = "Lang, {Charles H.} and Nystrom, {Gerald J.} and Frost, {Robert A.}",
year = "1999",
language = "English (US)",
volume = "276",
journal = "American Journal of Physiology",
issn = "0193-1849",
publisher = "American Physiological Society",
number = "3 39-3",

}

Regulation of IGF binding protein-1 in Hep G2 cells by cytokines and reactive oxygen species. / Lang, Charles H.; Nystrom, Gerald J.; Frost, Robert A.

In: American Journal of Physiology - Gastrointestinal and Liver Physiology, Vol. 276, No. 3 39-3, 1999.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Regulation of IGF binding protein-1 in Hep G2 cells by cytokines and reactive oxygen species

AU - Lang, Charles H.

AU - Nystrom, Gerald J.

AU - Frost, Robert A.

PY - 1999

Y1 - 1999

N2 - The liver is a major site of synthesis for insulin-like growth factor binding protein (IGFBP)-1. Because IGFBP-1 inhibits many anabolic actions of IGF-I, increases in IGFBP-1 may be partly responsible for the decrease in lean body mass observed in catabolic/inflammatory conditions. This study aimed to determine in Hep G2 cells 1) the sensitivity of IGFBP-1 synthesis to treatment with interleukin (IL)-1, tumor necrosis factor-α (TNF-α), and IL- 6, 2) the ability of reactive oxygen species (ROS) to enhance IGFBP-1 production, and 3) the role of ROS in mediating cytokine-induced increases in IGFBP-1. Hep G2 cells responded to IL-1 β, TNF-α, and IL-6 with maximal 8- to 10-fold increases in IGFBP-1 production. Although the maximal responsiveness of cells treated with TNF-α and IL-6 was 20-30% less than that with IL-1β, cells demonstrated a similar sensitivity to all cytokines (half-maximal responsive dose of ~10 ng/ml). A low concentration (3 ng/ml) of all three cytokines had an additive effect on IGFBP-1 production. Cytokines also increased IGFBP-1 mRNA. The half-life of IGFBP-1 mRNA was ~4 h and not altered by IL-1β. Incubation with ROS, including H2O2 and nitric oxide (NO) donors, resulted in a relatively smaller increase in IGFBP-1. However, preincubating Hep G2 cells with various free radical scavengers and NO synthase and eicosanoid inhibitors failed to prevent or attenuate cytokine-induced increases in IGFBP-1. Finally, preincubating cells with pyrrolidinedithiocarbamate (PDTC) but not SN50 (inhibitors of nuclear factor- κB activation and nuclear translocation, respectively) attenuated increases in IGFBP-1 induced by IL-1. These results indicate that 1) proinflammatory cytokines directly enhance IGFBP-1 synthesis by stimulating transcription without altering mRNA stability, 2) addition of exogenous ROS also stimulates IGFBP-1 production but to a smaller extent than cytokines, and 3) the cytokine-induced increase in IGFBP-1 production is not mediated by endogenous production of ROS or eicosanoids but appears to at least partially involve a PDTC-sensitive pathway.

AB - The liver is a major site of synthesis for insulin-like growth factor binding protein (IGFBP)-1. Because IGFBP-1 inhibits many anabolic actions of IGF-I, increases in IGFBP-1 may be partly responsible for the decrease in lean body mass observed in catabolic/inflammatory conditions. This study aimed to determine in Hep G2 cells 1) the sensitivity of IGFBP-1 synthesis to treatment with interleukin (IL)-1, tumor necrosis factor-α (TNF-α), and IL- 6, 2) the ability of reactive oxygen species (ROS) to enhance IGFBP-1 production, and 3) the role of ROS in mediating cytokine-induced increases in IGFBP-1. Hep G2 cells responded to IL-1 β, TNF-α, and IL-6 with maximal 8- to 10-fold increases in IGFBP-1 production. Although the maximal responsiveness of cells treated with TNF-α and IL-6 was 20-30% less than that with IL-1β, cells demonstrated a similar sensitivity to all cytokines (half-maximal responsive dose of ~10 ng/ml). A low concentration (3 ng/ml) of all three cytokines had an additive effect on IGFBP-1 production. Cytokines also increased IGFBP-1 mRNA. The half-life of IGFBP-1 mRNA was ~4 h and not altered by IL-1β. Incubation with ROS, including H2O2 and nitric oxide (NO) donors, resulted in a relatively smaller increase in IGFBP-1. However, preincubating Hep G2 cells with various free radical scavengers and NO synthase and eicosanoid inhibitors failed to prevent or attenuate cytokine-induced increases in IGFBP-1. Finally, preincubating cells with pyrrolidinedithiocarbamate (PDTC) but not SN50 (inhibitors of nuclear factor- κB activation and nuclear translocation, respectively) attenuated increases in IGFBP-1 induced by IL-1. These results indicate that 1) proinflammatory cytokines directly enhance IGFBP-1 synthesis by stimulating transcription without altering mRNA stability, 2) addition of exogenous ROS also stimulates IGFBP-1 production but to a smaller extent than cytokines, and 3) the cytokine-induced increase in IGFBP-1 production is not mediated by endogenous production of ROS or eicosanoids but appears to at least partially involve a PDTC-sensitive pathway.

UR - http://www.scopus.com/inward/record.url?scp=0032955687&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032955687&partnerID=8YFLogxK

M3 - Article

VL - 276

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1849

IS - 3 39-3

ER -