TY - JOUR
T1 - Relating soil gas to weathering using rock and regolith geochemistry
AU - Stinchcomb, Gary E.
AU - Kim, Hyojin
AU - Hasenmueller, Elizabeth A.
AU - Sullivan, Pamela L.
AU - Sak, Peter B.
AU - Brantley, Susan L.
N1 - Funding Information:
We thank the Appalachian Trail Conservancy and Fairfax County Parks and Recreation for allowing access to the sample sites. We acknowledge Jacques Courtillot, Laura Liermann, Julie Weitzman, and Reese Davis for their field and lab assistance. This manuscript was improved through insightful discussions with Heather Buss, Joel Moore, Kyle Rybacki, Milan Pavich, Tiffany Yesavage, Jason Kaye, and Ashlee Dere. Two anonymous reviewers and Associate Editor Matthew Winnick provided comments that improved an earlier version of this paper. We thank Dan Richter and Heather Buss who shared unpublished soil gas data in the compilation. PBS acknowledges permission from the National Park Service to sample along the Appalachian Trail Easement at the PA diabase site. Digital elevation data available from the U.S. Geological Survey. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Award Number DE-FG02-OSER15675.
Publisher Copyright:
© 2018 American Journal of Science. All rights reserved.
PY - 2018/9
Y1 - 2018/9
N2 - Weathering-induced fracturing (WIF) has been posited to be a mechanism that develops secondary porosity when mineral reaction fronts separate over depth intervals in regolith, and, in particular, when oxidation (which can promote porosity development through volume expansion) occurs deeper than dissolution (which grows porosity through material removal). If this is true, then the protolith's capacity to reduce O2 [for example, the Fe(II) content] and O2 availability should affect WIF. This study explores the hypothesis that if the ratio of pO2 to pCO2, in soil water, R'(aq), is greater than the ratio of the capacity of the protolith to consume O2 and CO2, R0, then WIF is more likely to occur, and regolith will become thicker. We evaluated this hypothesis by measuring the bulk geochemistry of regolith and rock and monitoring soil gas at three sites, encompassing a wide range of FeO concentrations and regolith thickness: a Pennsylvania (PA) diabase (10.15%; 3.8 m), a Virginia (VA) diabase (10.49%; 1.4 m), and a VA granite (1.45%; 20 m). We inferred soil water O2 concentrations from calculated equilibrium with the measured soil gas pO2. We observed WIF in the VA granite and PA diabase where R(aq) > R0, while at the site that lacked WIF - the VA diabase - R'(aq) < R0, particularly during the wet season. In the VA diabase, the presence of swelling clays (smectite) limits the ability of the oxidant (O2) to diffuse deeper into the weathering profile during the wet season and microbially accelerated iron oxidation rapidly consumes O2, limiting O2 availability for WIF. Smectite has little to no observable effect on O2 consumption in the PA diabase because the PA diabase is more fractured. A compilation of dissolved soil gas oxidation ratios, the stoichiometric ratio of O2 consumed to CO2 produced, shows that for unsaturated conditions, the mean is -1.45 ± 0.88, which is consistent with aerobic root and microbial respiration and the oxidation of organic matter. For near-saturated conditions, the mean oxidation ratio of the compilation is -3.46 ± 1.79, which is consistent with Fe redox and microbial metabolism under reducing conditions. The consistency between the VA and PA data presented here and the compilation suggests that soil water surplus drives coupled Fe-redox reactions that may act as a negative feedback, limiting O2 supply and WIF under wetter soil moisture conditions. We defined Rz, the ratio of O2 consumption to CO2 consumption during weathering for each depth interval, z. For all profiles, R'(aq) > Rznear the surface but R'(aq) approaches Rz in the saprolite. We suggest that R'(aq) > Rz in the soil reflects consumption of O2 and production of CO2 due to biotic processes whereas R'(aq) approaching Rz suggests that low fluxes at depth are at least partly dictated by rock and regolith composition, notably tortuosity of pores. In the VA diabase, we observed R'(aq) < Rz occasionally during the wet season in the lowermost soil and saprolite. Thus, at times the O2 availability may be less than the O2 consumption at that depth, consistent with Fe(II) loss and a lack of WIF. Mass-balance calculations show Fe loss in the VA diabase. The influence of rock composition on aqueous O2/CO2 concentrations in saprolite is consistent with the hypothesis that the protolith's capacity to consume O2 and CO2 has some effect on oxidation and acid consumption deep in the weathering profile.
AB - Weathering-induced fracturing (WIF) has been posited to be a mechanism that develops secondary porosity when mineral reaction fronts separate over depth intervals in regolith, and, in particular, when oxidation (which can promote porosity development through volume expansion) occurs deeper than dissolution (which grows porosity through material removal). If this is true, then the protolith's capacity to reduce O2 [for example, the Fe(II) content] and O2 availability should affect WIF. This study explores the hypothesis that if the ratio of pO2 to pCO2, in soil water, R'(aq), is greater than the ratio of the capacity of the protolith to consume O2 and CO2, R0, then WIF is more likely to occur, and regolith will become thicker. We evaluated this hypothesis by measuring the bulk geochemistry of regolith and rock and monitoring soil gas at three sites, encompassing a wide range of FeO concentrations and regolith thickness: a Pennsylvania (PA) diabase (10.15%; 3.8 m), a Virginia (VA) diabase (10.49%; 1.4 m), and a VA granite (1.45%; 20 m). We inferred soil water O2 concentrations from calculated equilibrium with the measured soil gas pO2. We observed WIF in the VA granite and PA diabase where R(aq) > R0, while at the site that lacked WIF - the VA diabase - R'(aq) < R0, particularly during the wet season. In the VA diabase, the presence of swelling clays (smectite) limits the ability of the oxidant (O2) to diffuse deeper into the weathering profile during the wet season and microbially accelerated iron oxidation rapidly consumes O2, limiting O2 availability for WIF. Smectite has little to no observable effect on O2 consumption in the PA diabase because the PA diabase is more fractured. A compilation of dissolved soil gas oxidation ratios, the stoichiometric ratio of O2 consumed to CO2 produced, shows that for unsaturated conditions, the mean is -1.45 ± 0.88, which is consistent with aerobic root and microbial respiration and the oxidation of organic matter. For near-saturated conditions, the mean oxidation ratio of the compilation is -3.46 ± 1.79, which is consistent with Fe redox and microbial metabolism under reducing conditions. The consistency between the VA and PA data presented here and the compilation suggests that soil water surplus drives coupled Fe-redox reactions that may act as a negative feedback, limiting O2 supply and WIF under wetter soil moisture conditions. We defined Rz, the ratio of O2 consumption to CO2 consumption during weathering for each depth interval, z. For all profiles, R'(aq) > Rznear the surface but R'(aq) approaches Rz in the saprolite. We suggest that R'(aq) > Rz in the soil reflects consumption of O2 and production of CO2 due to biotic processes whereas R'(aq) approaching Rz suggests that low fluxes at depth are at least partly dictated by rock and regolith composition, notably tortuosity of pores. In the VA diabase, we observed R'(aq) < Rz occasionally during the wet season in the lowermost soil and saprolite. Thus, at times the O2 availability may be less than the O2 consumption at that depth, consistent with Fe(II) loss and a lack of WIF. Mass-balance calculations show Fe loss in the VA diabase. The influence of rock composition on aqueous O2/CO2 concentrations in saprolite is consistent with the hypothesis that the protolith's capacity to consume O2 and CO2 has some effect on oxidation and acid consumption deep in the weathering profile.
UR - http://www.scopus.com/inward/record.url?scp=85054308398&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054308398&partnerID=8YFLogxK
U2 - 10.2475/07.2018.01
DO - 10.2475/07.2018.01
M3 - Article
AN - SCOPUS:85054308398
SN - 0002-9599
VL - 318
SP - 727
EP - 763
JO - American Journal of Science
JF - American Journal of Science
IS - 7
ER -