TY - JOUR
T1 - Relationship between viscous dynamics and the configurational thermal expansion coefficient of glass-forming liquids
AU - Reis, Raphael M.C.V.
AU - Mauro, John C.
AU - Geisinger, Karen L.
AU - Potuzak, Marcel
AU - Smedskjaer, Morten M.
AU - Guo, Xiaoju
AU - Allan, Douglas C.
PY - 2012/2/1
Y1 - 2012/2/1
N2 - We propose a model to describe the relationship between the viscosity of a glass-forming liquid and its configurational contribution to liquid state thermal expansion. The viscosity of the glass-forming liquids is expressed in terms of three standard parameters: the glass transition temperature (T g), the liquid fragility index (m), and the extrapolated infinite temperature viscosity (η ∞), which are obtained by fitting of the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) expression to measured viscosity data. The model is tested with experimental data for 41 different glass-forming systems. A good correlation is observed between our model viscosity parameter,h(T g, m, η ∞), and the configurational coefficient of thermal expansion (i.e., the configurational CTE). Within a given class of glass compositions, the model offers the ability to predict trends in configurational CTE with changes in viscosity parameters. Since viscosity is governed by glass network topology, the model also suggests the role of topological constraints in governing changes in configurational CTE.
AB - We propose a model to describe the relationship between the viscosity of a glass-forming liquid and its configurational contribution to liquid state thermal expansion. The viscosity of the glass-forming liquids is expressed in terms of three standard parameters: the glass transition temperature (T g), the liquid fragility index (m), and the extrapolated infinite temperature viscosity (η ∞), which are obtained by fitting of the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) expression to measured viscosity data. The model is tested with experimental data for 41 different glass-forming systems. A good correlation is observed between our model viscosity parameter,h(T g, m, η ∞), and the configurational coefficient of thermal expansion (i.e., the configurational CTE). Within a given class of glass compositions, the model offers the ability to predict trends in configurational CTE with changes in viscosity parameters. Since viscosity is governed by glass network topology, the model also suggests the role of topological constraints in governing changes in configurational CTE.
UR - http://www.scopus.com/inward/record.url?scp=84856098568&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856098568&partnerID=8YFLogxK
U2 - 10.1016/j.jnoncrysol.2011.11.029
DO - 10.1016/j.jnoncrysol.2011.11.029
M3 - Article
AN - SCOPUS:84856098568
VL - 358
SP - 648
EP - 651
JO - Journal of Non-Crystalline Solids
JF - Journal of Non-Crystalline Solids
SN - 0022-3093
IS - 3
ER -