Relationships between conductor damage, quenching and electromechanical behavior in YBCO coated conductors

A. L. Mbaruku, U. P. Trociewitz, X. Wang, J. Schwartz

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The implementation of emerging superconducting materials into magnet systems with long service lifetimes requires a thorough understanding of their engineering properties, including their quench and electromechanical behaviors. Furthermore, it is essential to understand the role of defects in the conductor, whether they be pre-existing defects from the conductor manufacturing process that locally reduce J c, or local defects that result from a non-destructive quench (i.e., a quench that may reduce J c locally but does not significantly affect the end-to-end behavior). This paper reports results on both of these types of defects and the interplay between quenching and electromechanical behavior. Quench studies investigate the initiation and propagation of quenches in coated conductors. Disturbances in homogeneous conductors are initiated by a pulsed heater attached to the conductor. Disturbances in locally damaged conductors are initiated by increasing the transport current above the I c at the local defect but below the end-to-end I c. Samples are quenched to determine the minimum quench energy and the quench propagation velocity. Homogeneous samples are also quenched to the point of initiating local damage, thereby identifying the maximum allowable hot-spot temperature or hot-spot temperature gradient. Samples used in quench studies are subsequently used in I c -strain measurements to determine how quenching affects subsequent performance. Samples that exhibit reduced I c from quenching, and samples from regions adjacent to such damaged samples, are studied. It is found that quenching can reduce the electromechanical performance of conductors that do not initially show a reduction in their electrical performance.

Original languageEnglish (US)
Pages (from-to)3044-3049
Number of pages6
JournalIEEE Transactions on Applied Superconductivity
Volume17
Issue number2
DOIs
StatePublished - Jun 2007

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Relationships between conductor damage, quenching and electromechanical behavior in YBCO coated conductors'. Together they form a unique fingerprint.

Cite this