TY - JOUR
T1 - Reliable identification of compton-thick quasars at z ≈2
T2 - Spitzer mid-infrared spectroscopy of HDF-oMD49
AU - Alexander, D. M.
AU - Chary, R. R.
AU - Pope, A.
AU - Bauer, F. E.
AU - Brandt, W. N.
AU - Daddi, E.
AU - Dickinson, M.
AU - Elbaz, D.
AU - Reddy, N. A.
PY - 2008/11/10
Y1 - 2008/11/10
N2 - Many models that seek to explain the origin of the unresolved X-ray background predict that Compton-thick active galactic nuclei (AGNs) are ubiquitous at high redshift. However, few distant Compton-thick AGNs have been reliably identified to date. Here we present Spitzer IRS spectroscopy and 3.6-70 μm photometry of a z = 2.211 optically identified AGN (HDF-oMD49) that is formally undetected in the 2 Ms Chandra Deep Field-North (CDF-N) survey. The Spitzer IRS spectrum and spectral energy distribution of this object is AGN dominated, and a comparison of the energetics at X-ray wavelengths to those derived from mid-infrared (mid-IR) and optical spectroscopy shows that the AGN is intrinsically luminous (L2-10 keV ≈ 3 × 1044 ergs s-1) but heavily absorbed by Compton-thick material (N H ≫ 1024 cm-2); i.e., this object is a Compton-thick quasar. Adopting the same approach that we applied to HDF-oMD49, we found a further six objects at z ≈ 2-2.5 in the literature that are also X-ray weak/undetected but have evidence for AGN activity from optical and/or mid-IR spectroscopy, and show that all of these sources are likely to be Compton-thick quasars with L2-10 keV > 1044 ergs s -1. On the basis of the definition of Daddi et al., these Compton-thick quasars would be classified as mid-IR excess galaxies, and our study provides the first spectroscopic confirmation of Compton-thick AGN activity in a subsample of these z ≈2 mid-IR-bright galaxies. Using the four objects that lie in the CDF-N field, we estimate the space density of reliably identified Compton-thick quasars [Ψ ≈ (0.7-2.5) × 10-5 Mpc-3 for L2-10 keV > 1044 ergs s -1 objects at z ≈ 2-2.5] and show that Compton-thick accretion was probably as ubiquitous as unobscured accretion in the distant universe.
AB - Many models that seek to explain the origin of the unresolved X-ray background predict that Compton-thick active galactic nuclei (AGNs) are ubiquitous at high redshift. However, few distant Compton-thick AGNs have been reliably identified to date. Here we present Spitzer IRS spectroscopy and 3.6-70 μm photometry of a z = 2.211 optically identified AGN (HDF-oMD49) that is formally undetected in the 2 Ms Chandra Deep Field-North (CDF-N) survey. The Spitzer IRS spectrum and spectral energy distribution of this object is AGN dominated, and a comparison of the energetics at X-ray wavelengths to those derived from mid-infrared (mid-IR) and optical spectroscopy shows that the AGN is intrinsically luminous (L2-10 keV ≈ 3 × 1044 ergs s-1) but heavily absorbed by Compton-thick material (N H ≫ 1024 cm-2); i.e., this object is a Compton-thick quasar. Adopting the same approach that we applied to HDF-oMD49, we found a further six objects at z ≈ 2-2.5 in the literature that are also X-ray weak/undetected but have evidence for AGN activity from optical and/or mid-IR spectroscopy, and show that all of these sources are likely to be Compton-thick quasars with L2-10 keV > 1044 ergs s -1. On the basis of the definition of Daddi et al., these Compton-thick quasars would be classified as mid-IR excess galaxies, and our study provides the first spectroscopic confirmation of Compton-thick AGN activity in a subsample of these z ≈2 mid-IR-bright galaxies. Using the four objects that lie in the CDF-N field, we estimate the space density of reliably identified Compton-thick quasars [Ψ ≈ (0.7-2.5) × 10-5 Mpc-3 for L2-10 keV > 1044 ergs s -1 objects at z ≈ 2-2.5] and show that Compton-thick accretion was probably as ubiquitous as unobscured accretion in the distant universe.
UR - http://www.scopus.com/inward/record.url?scp=55849138363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55849138363&partnerID=8YFLogxK
U2 - 10.1086/591928
DO - 10.1086/591928
M3 - Article
AN - SCOPUS:55849138363
SN - 0004-637X
VL - 687
SP - 835
EP - 847
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
ER -