Remarkable electrochemical properties of novel LaNi0.5Co0.5O3/0.333Co3O4 hollow spheres with a mesoporous shell

Ni Wang, Mengqi Yao, Peng Zhao, Wencheng Hu, Sridhar Komarneni

Research output: Contribution to journalArticle

43 Scopus citations

Abstract

An atomization route incorporating colloidal silica as a template was employed to synthesize LaNi0.5Co0.5O3/0.333Co3O4 (LNCO/CO) hollow spheres with a highly mesoporous shell. XRD and FESEM and HRTEM were used to characterize the crystalline phases and micro-morphology, respectively. The mesoporous shell showed a high specific surface area of 247 m2 g-1 as well as a mean pore size of about 2.53 nm as determined from N2 adsorption-desorption isotherms. The as-obtained spherical hollow spheres exhibited remarkable electrochemical performance as a battery-type electrode material with a maximum specific capacity of 498C g-1 at a current density of 2 A g-1 and ultra-long charge-discharge stability for 50 000 cycles in a three-electrode system. Additionally, a hybrid supercapacitor assembled with LNCO/CO hollow spheres as the positive electrode and N-doped mesoporous carbon as the negative electrode showed a high specific capacitance of 113.2 F g-1 at 1 A g-1 and a very high energy density of 42.8 Wh kg-1 at a power density of 424 W kg-1. The hybrid supercapacitor also exhibited a long-term cycle life of up to 30 000 cycles with a specific capacitance retention of 90.4%, and these properties meet the growing demands of long-life energy-related devices.

Original languageEnglish (US)
Pages (from-to)5838-5845
Number of pages8
JournalJournal of Materials Chemistry A
Volume5
Issue number12
DOIs
StatePublished - Jan 1 2017

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint Dive into the research topics of 'Remarkable electrochemical properties of novel LaNi<sub>0.5</sub>Co<sub>0.5</sub>O<sub>3</sub>/0.333Co<sub>3</sub>O<sub>4</sub> hollow spheres with a mesoporous shell'. Together they form a unique fingerprint.

  • Cite this