Remote detection of stress corrosion cracking: Surface composition and crack detection

Cliff J. Lissenden, Igor Jovanovic, Arthur T. Motta, Xuan Xiao, Samuel Le Berre, David Fobar, Hwanjeong Cho, Sungho Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

Original languageEnglish (US)
Title of host publication44th Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 37
EditorsDale E. Chimenti, Leonard J. Bond
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416444
DOIs
StatePublished - Apr 20 2018
Event44th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2017 - Provo, United States
Duration: Jul 16 2017Jul 21 2017

Publication series

NameAIP Conference Proceedings
Volume1949
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other44th Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2017
CountryUnited States
CityProvo
Period7/16/177/21/17

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Remote detection of stress corrosion cracking: Surface composition and crack detection'. Together they form a unique fingerprint.

Cite this