Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

W. D. Hively, Sjoerd Willem Duiker, G. McCarty, K. Prabhakara

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d' Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36% to 67% of corn fields in Berks County, from 53% to 75% in Lancaster County, from 42% to 65% in Lebanon County, and from 26% to 52% in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25% and 48% of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.

Original languageEnglish (US)
Pages (from-to)340-352
Number of pages13
JournalJournal of Soil and Water Conservation
Volume70
Issue number6
DOIs
StatePublished - Nov 1 2015

Fingerprint

cover crop
cover crops
remote sensing
maize
vegetation
corn
crop residue
ground cover plants
crop residues
satellite imagery
Lebanon
silage
winter
Chesapeake Bay
harvest date
cropping practice
watershed
crop
outreach
summer

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Water Science and Technology
  • Soil Science
  • Nature and Landscape Conservation

Cite this

@article{92dc7874ec6a48f3b649493f9d2c358f,
title = "Remote sensing to monitor cover crop adoption in southeastern Pennsylvania",
abstract = "In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d' Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36{\%} to 67{\%} of corn fields in Berks County, from 53{\%} to 75{\%} in Lancaster County, from 42{\%} to 65{\%} in Lebanon County, and from 26{\%} to 52{\%} in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25{\%} and 48{\%} of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.",
author = "Hively, {W. D.} and Duiker, {Sjoerd Willem} and G. McCarty and K. Prabhakara",
year = "2015",
month = "11",
day = "1",
doi = "10.2489/jswc.70.6.340",
language = "English (US)",
volume = "70",
pages = "340--352",
journal = "Journal of Soils and Water Conservation",
issn = "0022-4561",
publisher = "Soil Conservation Society of America",
number = "6",

}

Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. / Hively, W. D.; Duiker, Sjoerd Willem; McCarty, G.; Prabhakara, K.

In: Journal of Soil and Water Conservation, Vol. 70, No. 6, 01.11.2015, p. 340-352.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

AU - Hively, W. D.

AU - Duiker, Sjoerd Willem

AU - McCarty, G.

AU - Prabhakara, K.

PY - 2015/11/1

Y1 - 2015/11/1

N2 - In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d' Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36% to 67% of corn fields in Berks County, from 53% to 75% in Lancaster County, from 42% to 65% in Lebanon County, and from 26% to 52% in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25% and 48% of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.

AB - In the Chesapeake Bay Watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient cropping systems. In southeastern Pennsylvania, cover crops can be successfully established following corn (Zea mays L.) silage harvest and are strongly promoted for use in this niche. They are also planted following corn grain, soybean (Glycine max L.), and vegetable harvest. In Pennsylvania, the use of winter cover crops for agricultural conservation has been supported through a combination of outreach, regulation, and incentives. On-farm implementation is thought to be increasing, but the actual extent of cover crops is not well quantified. Satellite imagery can be used to map green winter cover crop vegetation on agricultural fields and, when integrated with additional remote sensing data products, can be used to evaluate wintertime vegetative groundcover following specific summer crops. This study used Landsat and SPOT (System Probatoire d' Observation de la Terre) satellite imagery, in combination with the USDA National Agricultural Statistics Service Cropland Data Layer, to evaluate the extent and amount of green wintertime vegetation on agricultural fields in four Pennsylvania counties (Berks, Lebanon, Lancaster, and York) from 2010 to 2013. In December of 2010, a windshield survey was conducted to collect baseline data on winter cover crop implementation, with particular focus on identifying corn harvested for silage (expected earlier harvest date and lower levels of crop residue), versus for grain (expected later harvest date and higher levels of crop residue). Satellite spectral indices were successfully used to detect both the amount of green vegetative groundcover and the amount of crop residue on the surveyed fields. Analysis of wintertime satellite imagery showed consistent increases in vegetative groundcover over the four-year study period and determined that trends did not result from annual weather variability, indicating that farmers are increasing adoption of practices such as cover cropping that promote wintertime vegetation. Between 2010 and 2013, the occurrence of wintertime vegetation on agricultural fields increased from 36% to 67% of corn fields in Berks County, from 53% to 75% in Lancaster County, from 42% to 65% in Lebanon County, and from 26% to 52% in York County. Apparently, efforts to promote cover crop use in the Chesapeake Bay Watershed have coincided with a rapid increase in the occurrence of wintertime vegetation following corn harvest in southeastern Pennsylvania. However, despite these increases, between 25% and 48% of corn fields remained without substantial green vegetation over the wintertime, indicating further opportunity for cover crop adoption.

UR - http://www.scopus.com/inward/record.url?scp=84946826764&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946826764&partnerID=8YFLogxK

U2 - 10.2489/jswc.70.6.340

DO - 10.2489/jswc.70.6.340

M3 - Article

AN - SCOPUS:84946826764

VL - 70

SP - 340

EP - 352

JO - Journal of Soils and Water Conservation

JF - Journal of Soils and Water Conservation

SN - 0022-4561

IS - 6

ER -