TY - JOUR
T1 - Removal of synthetic azo dye using bimetallic nickel-iron nanoparticles
AU - Foster, Shelby L.
AU - Estoque, Katie
AU - Voecks, Michael
AU - Rentz, Nikki
AU - Greenlee, Lauren F.
N1 - Funding Information:
The authors acknowledge help with ICP measurements, which were performed in the Department of Geological Sciences at the University of Colorado Boulder. The authors also acknowledge support from the Central Analytical Mass Spectrometry Facility at the University of Colorado Boulder, for help with LC-MS measurements. MV and KE acknowledge support from the Summer High School Internship Program (SHIP) at the National Institute of Standards and Technology. This work was supported by the National Institute of Standards and Technology and the University of Arkansas.
Publisher Copyright:
Copyright © 2019 Shelby L. Foster et al.
PY - 2019
Y1 - 2019
N2 - Bimetallic nanoparticles comprised of iron (Fe) and nickel (Ni) were investigated for the removal of an azo dye contaminant in water. Morphology (core shell and alloy) and metal molar ratio (Ni2Fe10, Ni5Fe10, and Ni10Fe10) were tested as key nanoparticle properties. The shelf life of the nanoparticles was tested over a 3-week period, and the effect of initial nanoparticle concentration on dye removal was evaluated. The highest initial nanoparticle concentration (1000 mg/L) showed consistent Orange G removal and the greatest extent of dye removal, as compared to the other tested concentrations (i.e., 750 mg/L, 500 mg/L, and 250 mg/L) for the same nanoparticle morphology and metal molar ratio. The metal molar ratio significantly affected the performance of the core shell morphology, where overall dye removal was found to be 66%, 89%, and 98% with an increasing molar ratio (Ni2Fe10 → Ni5Fe10 → Ni10Fe10). In contrast, the overall removal of the dye for all molar ratios of the alloy nanoparticles only resulted in a variability of ±0.005%. When stored in water for 3 weeks, core shell nanoparticles lost reactivity with an average > 17% loss in removal with each passing week. However, the alloy nanoparticles were able to continually remove Orange G from solution after 3 weeks of storage to ~97% when used at a starting nanoparticle concentration of 1000 mg/L. Overall, the Ni2Fe10, Ni5Fe10, and Ni10Fe10 alloy nanoparticles with a starting nanoparticle concentration of 1000 mg/L resulted in the greatest dye removal of 97%, 99%, and 98%, respectively. Kinetic rate models were used to analyze dye removal rate constants as a function of nanoparticle properties. Kinetic rate models were seen to differ from core shell (first-order kinetics) to alloy morphology (second-order kinetics). Alloy nanoparticles resulted in as high as X kinetic rate constant, and core shell nanoparticles resulted in as high as XX kinetic rate constant. Metal leaching from the nanoparticles was investigated; alloy nanoparticles resulted in leaching of 3% Fe and 5% Ni which is similar to core shell leaching of 3.2% Fe and 4.3% Ni from the Fe10Ni10 nanoparticles.
AB - Bimetallic nanoparticles comprised of iron (Fe) and nickel (Ni) were investigated for the removal of an azo dye contaminant in water. Morphology (core shell and alloy) and metal molar ratio (Ni2Fe10, Ni5Fe10, and Ni10Fe10) were tested as key nanoparticle properties. The shelf life of the nanoparticles was tested over a 3-week period, and the effect of initial nanoparticle concentration on dye removal was evaluated. The highest initial nanoparticle concentration (1000 mg/L) showed consistent Orange G removal and the greatest extent of dye removal, as compared to the other tested concentrations (i.e., 750 mg/L, 500 mg/L, and 250 mg/L) for the same nanoparticle morphology and metal molar ratio. The metal molar ratio significantly affected the performance of the core shell morphology, where overall dye removal was found to be 66%, 89%, and 98% with an increasing molar ratio (Ni2Fe10 → Ni5Fe10 → Ni10Fe10). In contrast, the overall removal of the dye for all molar ratios of the alloy nanoparticles only resulted in a variability of ±0.005%. When stored in water for 3 weeks, core shell nanoparticles lost reactivity with an average > 17% loss in removal with each passing week. However, the alloy nanoparticles were able to continually remove Orange G from solution after 3 weeks of storage to ~97% when used at a starting nanoparticle concentration of 1000 mg/L. Overall, the Ni2Fe10, Ni5Fe10, and Ni10Fe10 alloy nanoparticles with a starting nanoparticle concentration of 1000 mg/L resulted in the greatest dye removal of 97%, 99%, and 98%, respectively. Kinetic rate models were used to analyze dye removal rate constants as a function of nanoparticle properties. Kinetic rate models were seen to differ from core shell (first-order kinetics) to alloy morphology (second-order kinetics). Alloy nanoparticles resulted in as high as X kinetic rate constant, and core shell nanoparticles resulted in as high as XX kinetic rate constant. Metal leaching from the nanoparticles was investigated; alloy nanoparticles resulted in leaching of 3% Fe and 5% Ni which is similar to core shell leaching of 3.2% Fe and 4.3% Ni from the Fe10Ni10 nanoparticles.
UR - http://www.scopus.com/inward/record.url?scp=85065877910&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065877910&partnerID=8YFLogxK
U2 - 10.1155/2019/9807605
DO - 10.1155/2019/9807605
M3 - Article
AN - SCOPUS:85065877910
SN - 1687-4110
VL - 2019
JO - Journal of Nanomaterials
JF - Journal of Nanomaterials
M1 - 9807605
ER -