Rerandomization to Balance Tiers of Covariates

Kari Lock Morgan, Donald B. Rubin

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

When conducting a randomized experiment, if an allocation yields treatment groups that differ meaningfully with respect to relevant covariates, groups should be rerandomized. The process involves specifying an explicit criterion for whether an allocation is acceptable, based on a measure of covariate balance, and rerandomizing units until an acceptable allocation is obtained. Here, we illustrate how rerandomization could have improved the design of an already conducted randomized experiment on vocabulary and mathematics training programs, then provide a rerandomization procedure for covariates that vary in importance, and finally offer other extensions for rerandomization, including methods addressing computational efficiency. When covariates vary in a priori importance, better balance should be required for more important covariates. Rerandomization based on Mahalanobis distance preserves the joint distribution of covariates, but balances all covariates equally. Here, we propose rerandomizing based on Mahalanobis distance within tiers of covariate importance. Because balancing covariates in one tier will in general also partially balance covariates in other tiers, for each subsequent tier we explicitly balance only the components orthogonal to covariates in more important tiers.

Original languageEnglish (US)
Pages (from-to)1412-1421
Number of pages10
JournalJournal of the American Statistical Association
Volume110
Issue number512
DOIs
Publication statusPublished - Oct 2 2015

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Cite this