Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

A. Ashtari Esfahani, S. Böser, C. Claessens, L. De Viveiros, P. J. Doe, S. Doeleman, M. Fertl, E. C. Finn, J. A. Formaggio, M. Guigue, K. M. Heeger, A. M. Jones, K. Kazkaz, B. H. Laroque, E. Machado, B. Monreal, J. A. Nikkel, N. S. Oblath, R. G.H. Robertson, L. J. RosenbergG. Rybka, L. Saldaña, P. L. Slocum, J. R. Tedeschi, T. Thümmler, B. A. Vandevender, M. Wachtendonk, J. Weintroub, A. Young, E. Zayas

Research output: Contribution to journalConference article

Abstract

The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83mKr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.

Original languageEnglish (US)
Article number012074
JournalJournal of Physics: Conference Series
Volume888
Issue number1
DOIs
StatePublished - Sep 20 2017
Event27th International Conference on Neutrino Physics and Astrophysics, Neutrino 2016 - South Kensington, United Kingdom
Duration: Jul 4 2016Jul 9 2016

Fingerprint

cyclotron radiation
detectors
radiation
prototypes
spectroscopy
electrons
rectangular waveguides
cyclotron frequency
internal conversion
decay
tritium
viability
neutrinos
electron energy
magnetic fields

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Ashtari Esfahani, A. ; Böser, S. ; Claessens, C. ; De Viveiros, L. ; Doe, P. J. ; Doeleman, S. ; Fertl, M. ; Finn, E. C. ; Formaggio, J. A. ; Guigue, M. ; Heeger, K. M. ; Jones, A. M. ; Kazkaz, K. ; Laroque, B. H. ; Machado, E. ; Monreal, B. ; Nikkel, J. A. ; Oblath, N. S. ; Robertson, R. G.H. ; Rosenberg, L. J. ; Rybka, G. ; Saldaña, L. ; Slocum, P. L. ; Tedeschi, J. R. ; Thümmler, T. ; Vandevender, B. A. ; Wachtendonk, M. ; Weintroub, J. ; Young, A. ; Zayas, E. / Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector. In: Journal of Physics: Conference Series. 2017 ; Vol. 888, No. 1.
@article{b2a937bbc8b54e54b3db65274ec05b76,
title = "Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector",
abstract = "The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83mKr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.",
author = "{Ashtari Esfahani}, A. and S. B{\"o}ser and C. Claessens and {De Viveiros}, L. and Doe, {P. J.} and S. Doeleman and M. Fertl and Finn, {E. C.} and Formaggio, {J. A.} and M. Guigue and Heeger, {K. M.} and Jones, {A. M.} and K. Kazkaz and Laroque, {B. H.} and E. Machado and B. Monreal and Nikkel, {J. A.} and Oblath, {N. S.} and Robertson, {R. G.H.} and Rosenberg, {L. J.} and G. Rybka and L. Salda{\~n}a and Slocum, {P. L.} and Tedeschi, {J. R.} and T. Th{\"u}mmler and Vandevender, {B. A.} and M. Wachtendonk and J. Weintroub and A. Young and E. Zayas",
year = "2017",
month = "9",
day = "20",
doi = "10.1088/1742-6596/888/1/012074",
language = "English (US)",
volume = "888",
journal = "Journal of Physics: Conference Series",
issn = "1742-6588",
publisher = "IOP Publishing Ltd.",
number = "1",

}

Ashtari Esfahani, A, Böser, S, Claessens, C, De Viveiros, L, Doe, PJ, Doeleman, S, Fertl, M, Finn, EC, Formaggio, JA, Guigue, M, Heeger, KM, Jones, AM, Kazkaz, K, Laroque, BH, Machado, E, Monreal, B, Nikkel, JA, Oblath, NS, Robertson, RGH, Rosenberg, LJ, Rybka, G, Saldaña, L, Slocum, PL, Tedeschi, JR, Thümmler, T, Vandevender, BA, Wachtendonk, M, Weintroub, J, Young, A & Zayas, E 2017, 'Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector', Journal of Physics: Conference Series, vol. 888, no. 1, 012074. https://doi.org/10.1088/1742-6596/888/1/012074

Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector. / Ashtari Esfahani, A.; Böser, S.; Claessens, C.; De Viveiros, L.; Doe, P. J.; Doeleman, S.; Fertl, M.; Finn, E. C.; Formaggio, J. A.; Guigue, M.; Heeger, K. M.; Jones, A. M.; Kazkaz, K.; Laroque, B. H.; Machado, E.; Monreal, B.; Nikkel, J. A.; Oblath, N. S.; Robertson, R. G.H.; Rosenberg, L. J.; Rybka, G.; Saldaña, L.; Slocum, P. L.; Tedeschi, J. R.; Thümmler, T.; Vandevender, B. A.; Wachtendonk, M.; Weintroub, J.; Young, A.; Zayas, E.

In: Journal of Physics: Conference Series, Vol. 888, No. 1, 012074, 20.09.2017.

Research output: Contribution to journalConference article

TY - JOUR

T1 - Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

AU - Ashtari Esfahani, A.

AU - Böser, S.

AU - Claessens, C.

AU - De Viveiros, L.

AU - Doe, P. J.

AU - Doeleman, S.

AU - Fertl, M.

AU - Finn, E. C.

AU - Formaggio, J. A.

AU - Guigue, M.

AU - Heeger, K. M.

AU - Jones, A. M.

AU - Kazkaz, K.

AU - Laroque, B. H.

AU - Machado, E.

AU - Monreal, B.

AU - Nikkel, J. A.

AU - Oblath, N. S.

AU - Robertson, R. G.H.

AU - Rosenberg, L. J.

AU - Rybka, G.

AU - Saldaña, L.

AU - Slocum, P. L.

AU - Tedeschi, J. R.

AU - Thümmler, T.

AU - Vandevender, B. A.

AU - Wachtendonk, M.

AU - Weintroub, J.

AU - Young, A.

AU - Zayas, E.

PY - 2017/9/20

Y1 - 2017/9/20

N2 - The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83mKr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.

AB - The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83mKr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.

UR - http://www.scopus.com/inward/record.url?scp=85032444047&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85032444047&partnerID=8YFLogxK

U2 - 10.1088/1742-6596/888/1/012074

DO - 10.1088/1742-6596/888/1/012074

M3 - Conference article

AN - SCOPUS:85032444047

VL - 888

JO - Journal of Physics: Conference Series

JF - Journal of Physics: Conference Series

SN - 1742-6588

IS - 1

M1 - 012074

ER -