Rigorous electromagnetic modeling of near-field phase-shifting contact lithography

Research output: Contribution to journalArticle

25 Scopus citations


Electromagnetic absorption in a photoresist layer sandwiched between a silicon substrate and a quartz binary phase-shifting mask (employed in near-field phase shift contact lithography) is theoretically analyzed. A rigorous coupled-wave analysis is used to compute the distribution of specific absorption rate (SAR) in the photoresist layer on either monochromatic and polychromatic illumination. The nonuniform distribution of the SAR in the photoresist layer for the printing of high-aspect-ratio features is systematically examined in relation to the geometric dimensions of the binary phase mask, the photoresist layer thickness, and the polarization state of the incident plane wave. Two methods for the improvement of feature resolution and profile are also discussed.

Original languageEnglish (US)
Pages (from-to)34-53
Number of pages20
JournalMicroelectronic Engineering
Issue number1
Publication statusPublished - Jan 1 2004


All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Cite this