Role of Chain Polarity on Ion and Polymer Dynamics: Molecular Volume-Based Analysis of the Dielectric Constant for Polymerized Norbornene-Based Ionic Liquids

U. Hyeok Choi, Terry L. Price, Daniel V. Schoonover, Renxuan Xie, Harry W. Gibson, Ralph H. Colby

Research output: Contribution to journalArticlepeer-review

Abstract

Norbornene-based polymerized ionic liquids (PILs) were systematically prepared to understand the role of PIL architecture and linker on the ionic conductivity (σDC), segmental dynamics, and dielectric constant. In PILs with two- or one-armed imidazolium (Im+)-bis(trifluoromethanesulfonyl)imide (Tf2N-) pendants, their dynamics and polarity were tuned by incorporating either oxyethylene [(OCH2CH2)x = (OE)x, x = 1 or 3] or alkylene [(CH2)2] moieties as linkers between the norbornene and imidazolium cation moieties and ethyleneoxy [(CH2CH2O)y = (EO)y, y = 2 or 3] terminal units on the imidazolium. All PILs exhibit three dipolar relaxations; the local chain β motions of the PIL pendants were observed below the glass transition temperature (Tg), while above Tg, the segmental α and slower ionic rearranging α2 relaxations were observed. Unlike the alkylene linker, the OE linker incorporation speeds up the α and α2 relaxations (consistent with the decrease in Tg), increases the relaxation strengths [leading to an increase in the static and Coulombic dielectric constants (ϵs and ϵC)], imparts a higher number density of simultaneously conducting ions (p), and boosts their mobility (μ). This is directly reflected in the OE-containing PILs having 10 times higher ionic conductivities (σDC) than the PIL with the alkylene linker. The Tg, ϵs, and σDC are significantly influenced by the repeat unit molecular volume (Vm), polarizability volume (Vp), and Keesom volume (VK), suggesting that the OE linker not only facilitates ion dissociation of Im+Tf2N- but also promotes segmental motion, thereby leading to a strong correlation of ionic conductivity with the dielectric constant and glass transition temperature.

Original languageEnglish (US)
Pages (from-to)10561-10573
Number of pages13
JournalMacromolecules
Volume53
Issue number23
DOIs
StatePublished - Dec 8 2020

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Role of Chain Polarity on Ion and Polymer Dynamics: Molecular Volume-Based Analysis of the Dielectric Constant for Polymerized Norbornene-Based Ionic Liquids'. Together they form a unique fingerprint.

Cite this