Role of NO in modulating neuronal activity in superficial dorsal horn of spinal cord during exercise pressor reflex

Jianhua Li, Jere H. Mitchell

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-L-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume283
Issue number3 52-3
StatePublished - Sep 7 2002

Fingerprint

Reflex
Nitric Oxide
Proto-Oncogene Proteins c-fos
Cats
Neurons
Nitric Oxide Synthase
Arterial Pressure
Spinal Injections
Tibial Nerve
Hindlimb
Muscle Contraction
Synapses
Electric Stimulation
Spinal Cord Dorsal Horn
Leg
Skeletal Muscle
Staining and Labeling
Muscles

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

@article{9558c3cc5ebc4da2b3dc8a71aa4bda64,
title = "Role of NO in modulating neuronal activity in superficial dorsal horn of spinal cord during exercise pressor reflex",
abstract = "Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-L-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.",
author = "Jianhua Li and Mitchell, {Jere H.}",
year = "2002",
month = "9",
day = "7",
language = "English (US)",
volume = "283",
journal = "American Journal of Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "3 52-3",

}

TY - JOUR

T1 - Role of NO in modulating neuronal activity in superficial dorsal horn of spinal cord during exercise pressor reflex

AU - Li, Jianhua

AU - Mitchell, Jere H.

PY - 2002/9/7

Y1 - 2002/9/7

N2 - Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-L-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.

AB - Static contraction of hindlimb skeletal muscle in cats induces a reflex pressor response. The superficial dorsal horn of the spinal cord is the major site of the first synapse of this reflex. In this study, static contraction of the triceps surae muscle was evoked by electrical stimulation of the tibial nerve for 2 min in anesthetized cats (stimulus parameters: two times motor threshold at 30 Hz, 0.025-ms duration). Ten stimulations were performed and 1-min rest was allowed between stimulations. Muscle contraction caused a maximal increase of 32 ± 5 mmHg in mean arterial pressure (MAP), which was obtained from the first three contractions. Activated neurons in the superficial dorsal horn were identified by c-Fos protein. Distinct c-Fos expression was present in the L6-S1 level of the superficial dorsal horn ipsilateral to the contracting leg (88 ± 14 labeled cells per section at L7), whereas only scattered c-Fos expression was observed in the contralateral superficial dorsal horn (9 ± 2 labeled cells per section, P < 0.05 compared with ipsilateral section). A few c-Fos-labeled cells were found in control animals (12 ± 5 labeled cells per section, P < 0.05 compared with stimulated cats). Furthermore, double-labeling methods demonstrated that c-Fos protein coexisted with nitric oxide (NO) synthase (NOS) positive staining in the superficial dorsal horn. Finally, an intrathecal injection of an inhibitor of NOS, N-nitro-L-arginine methyl ester (5 mM), resulted in fewer c-Fos-labeled cells (58 ± 12 labeled cells per section) and a reduced maximal MAP response (20 ± 3 mmHg, P < 0.05). These results suggest that the exercise pressor reflex induced by static contraction is mediated by activation of neurons in the superficial dorsal horn and that formation of NO in this region is involved in modulating the activated neurons and the pressor response to contraction.

UR - http://www.scopus.com/inward/record.url?scp=0036354297&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036354297&partnerID=8YFLogxK

M3 - Article

VL - 283

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6135

IS - 3 52-3

ER -