Roughness effects on flow and heat transfer for additively manufactured channels

Curtis K. Stimpson, Jacob C. Snyder, Karen A. Thole, Dominic Mongillo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Scopus citations

Abstract

Recent technological advances in the field of additive manufacturing (AM), particularly with direct metal laser sintering (DMLS), have increased the potential for building gas turbine components with AM. Using DMLS for turbine components broadens the design space and allows for increasingly small and complex geometries to be fabricated with little increase in time or cost. Challenges arise when attempting to evaluate the advantages of DMLS for specific applications, particularly because of how little is known regarding the effects of surface roughness. This paper presents pressure drop and heat transfer results of flow through small, as produced channels that have been manufactured using DMLS in an effort to better understand roughness. Ten different coupons made with DMLS all having multiple rectangular channels were evaluated in this study. Measurements were collected at various flow conditions and reduced to a friction factor and a Nusselt number. Results showed significant augmentation of these parameters compared to smooth channels, particularly with the friction factor for minichannels with small hydraulic diameters. However, augmentation of Nusselt number did not increase proportionally with the augmentation of the friction factor.

Original languageEnglish (US)
Title of host publicationHeat Transfer
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791856710, 9780791856710
DOIs
StatePublished - Jan 1 2015
EventASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015 - Montreal, Canada
Duration: Jun 15 2015Jun 19 2015

Publication series

NameProceedings of the ASME Turbo Expo
Volume5A

Other

OtherASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015
Country/TerritoryCanada
CityMontreal
Period6/15/156/19/15

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Roughness effects on flow and heat transfer for additively manufactured channels'. Together they form a unique fingerprint.

Cite this