RSenter: Terms mining tool from unstructured data sources

Richard K. Lomotey, Ralph Deters

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The emergence of 'Big Data' is changing the data storage status quo at the business and corporate level. Previously, relational databases have been employed to accommodate business-related digital records but in today's data economy, the data is unstructured which puts limitations on relational databases. Thus, NoSQL databases have been proposed to contain the unstructured data which is chiefly schema-less, textual, file-based, and so on. However, the rise of unstructured data and the adoption of NoSQL storages lead to emerging challenges that call for active research. Firstly, existing data mining techniques are designed for schema-based data storages and are inapplicable to NoSQL storages. Secondly, NoSQL storages are from different vendors (or, providers) so require the understanding of multiple APIs to generate queries. These two challenges hinder data extraction for most businesses since information stored can be lost due to inaccessibility. Our ongoing research has therefore proposed a tool called RSenter that aids terms mining from unstructured data storages. Specific to NoSQL storages that are document-oriented, we detail the architectural design, the algorithms, and the benefits that distinguish the tool from other existing frameworks. Significantly, RSenter performs the required mining tasks in real-time which is crucial for business continuity.

Original languageEnglish (US)
Pages (from-to)298-311
Number of pages14
JournalInternational Journal of Business Process Integration and Management
Volume6
Issue number4
DOIs
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Business and International Management
  • Strategy and Management
  • Management Science and Operations Research

Fingerprint Dive into the research topics of 'RSenter: Terms mining tool from unstructured data sources'. Together they form a unique fingerprint.

Cite this