TY - JOUR
T1 - Schelling's segregation model
T2 - Parameters, scaling, and aggregation
AU - Singh, Abhinav
AU - Vainchtein, Dmitri
AU - Weiss, Howard
PY - 2009/9/15
Y1 - 2009/9/15
N2 - Thomas Schelling proposed a simple spatial model to illustrate how, even with relatively mild assumptions on each individual's nearest neighbor preferences, an integtated city would likely unravel to a segregated city, even if all individuals prefer integration. This agent based lattice model has become quite influential amongst social scientists, demographers, and economists. Aggregation relates to individuals coming together to form groups and Schelling equated global aggregation with segregation. Many authors assumed that the segregation which Schelling observed in simulations on very small cities persists for larger, realistic sized cities. We describe how different measures can be used to quantify the segregation and unlock its dependence on city size, disparate neighbor comfortability threshold, and population density. We develop highly efficient simulation algorithms and quantify aggregation in large cities based on thousands of trials. We identify distinct scales of global aggregation. In particular, we show that for the values of disparate neighbor comfortability threshold used by Schelling, the striking global aggregation Schelling observed is strictly a small city phenomenon. We also discover several scaling laws for the aggregation measures. Along the way we prove that in the Schelling model, in the process of evolution, the total perimeter of the interface between the different agents always decreases, which provides a useful analytical tool to study the evolution.
AB - Thomas Schelling proposed a simple spatial model to illustrate how, even with relatively mild assumptions on each individual's nearest neighbor preferences, an integtated city would likely unravel to a segregated city, even if all individuals prefer integration. This agent based lattice model has become quite influential amongst social scientists, demographers, and economists. Aggregation relates to individuals coming together to form groups and Schelling equated global aggregation with segregation. Many authors assumed that the segregation which Schelling observed in simulations on very small cities persists for larger, realistic sized cities. We describe how different measures can be used to quantify the segregation and unlock its dependence on city size, disparate neighbor comfortability threshold, and population density. We develop highly efficient simulation algorithms and quantify aggregation in large cities based on thousands of trials. We identify distinct scales of global aggregation. In particular, we show that for the values of disparate neighbor comfortability threshold used by Schelling, the striking global aggregation Schelling observed is strictly a small city phenomenon. We also discover several scaling laws for the aggregation measures. Along the way we prove that in the Schelling model, in the process of evolution, the total perimeter of the interface between the different agents always decreases, which provides a useful analytical tool to study the evolution.
UR - http://www.scopus.com/inward/record.url?scp=70349199620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70349199620&partnerID=8YFLogxK
U2 - 10.4054/DemRes.2009.21.12
DO - 10.4054/DemRes.2009.21.12
M3 - Article
AN - SCOPUS:70349199620
VL - 21
SP - 341
EP - 366
JO - Demographic Research
JF - Demographic Research
SN - 1435-9871
ER -