Screening thermal shock as an apple blossom thinning method. II. pollen tube growth and spur leaf injury in response to temperature and duration of thermal shock

Thomas M. Kon, Melanie A. Schupp, Hans E. Winzeler, James R. Schupp

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Blossom thinning can confer significant benefits to apple growers, including increased fruit size and annual bearing. However, current blossom thinning practices can damage spur leaves and/or fruit.We evaluated the use of short duration forced heated air treatments [thermal shock (TS)] as a blossom thinning strategy for 'York Imperial'. Using a variable-temperature heat gun, TS treatments were applied to solitary blossoms 24 hours after pollination. Effects of output temperature (five levels) and treatment duration (four levels) were evaluated using a completely randomized design with a factorial treatment structure. Short duration treatments (0.5 and 1.0 seconds) were ineffective for arresting pollen tube growth in vivo. TS temperature required to inhibit stylar pollen tube growth was inconsistent across years. In 2014, TS temperatures ≥56 °C inhibited pollen tubes from reaching the style base at 2.0 and 4.0 second durations.However, in 2015, TS temperatures ≥81 °C at 4.0 seconds prevented pollen tubes from reaching the style base. Inconsistent effects of TS across years were attributed to treatments being applied too late due to optimal conditions for pollen tube growth during the intervening 24-hour period after pollination. Excessive injury to spur leaf tissue was observed at temperatures higher than 84 8C and 70 8C (2.0 and 4.0 seconds, respectively). Pollen tube growth was reduced or arrested at temperature and duration combinations that caused minimal visible injury to spur leaves. Identifying and exploiting structural differences between apple blossoms and vegetative spur leaves may provide insight for the future development of TS or other attempts at developing selective thinning technologies.

Original languageEnglish (US)
Pages (from-to)632-636
Number of pages5
JournalHortScience
Volume55
Issue number5
DOIs
StatePublished - May 2020

All Science Journal Classification (ASJC) codes

  • Horticulture

Fingerprint Dive into the research topics of 'Screening thermal shock as an apple blossom thinning method. II. pollen tube growth and spur leaf injury in response to temperature and duration of thermal shock'. Together they form a unique fingerprint.

  • Cite this