Abstract
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, (Formula presented.), for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4·10-24 cm3 s-1, and ≃2.6·10-23 cm3 s-1 for the νν¯ channel, respectively.
Original language | English (US) |
---|---|
Article number | 492 |
Journal | European Physical Journal C |
Volume | 75 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2015 |
All Science Journal Classification (ASJC) codes
- Engineering (miscellaneous)
- Physics and Astronomy (miscellaneous)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Search for dark matter annihilation in the Galactic Center with IceCube-79: IceCube Collaboration'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Search for dark matter annihilation in the Galactic Center with IceCube-79 : IceCube Collaboration. / Aartsen, M. G.; Abraham, K.; Ackermann, M. et al.
In: European Physical Journal C, Vol. 75, No. 10, 492, 01.10.2015.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Search for dark matter annihilation in the Galactic Center with IceCube-79
T2 - IceCube Collaboration
AU - Aartsen, M. G.
AU - Abraham, K.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Altmann, D.
AU - Anderson, T.
AU - Archinger, M.
AU - Arguelles, C.
AU - Arlen, T. C.
AU - Auffenberg, J.
AU - Bai, X.
AU - Barwick, S. W.
AU - Baum, V.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker Tjus, J.
AU - Becker, K. H.
AU - Beiser, E.
AU - BenZvi, S.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bernhard, A.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Börner, M.
AU - Bos, F.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Braun, J.
AU - Brayeur, L.
AU - Bretz, H. P.
AU - Brown, A. M.
AU - Buzinsky, N.
AU - Casey, J.
AU - Casier, M.
AU - Cheung, E.
AU - Chirkin, D.
AU - Christov, A.
AU - Christy, B.
AU - Clark, K.
AU - Classen, L.
AU - Coenders, S.
AU - Cowen, D. F.
AU - Cruz Silva, A. H.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - Day, M.
AU - de André, J. P.A.M.
AU - De Clercq, C.
AU - Dembinski, H.
AU - De Ridder, S.
AU - Desiati, P.
AU - de Vries, K. D.
AU - de Wasseige, G.
AU - de With, M.
AU - DeYoung, T.
AU - Díaz-Vélez, J. C.
AU - Dumm, J. P.
AU - Dunkman, M.
AU - Eagan, R.
AU - Eberhardt, B.
AU - Ehrhardt, T.
AU - Eichmann, B.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fadiran, O.
AU - Fahey, S.
AU - Fazely, A. R.
AU - Fedynitch, A.
AU - Feintzeig, J.
AU - Felde, J.
AU - Filimonov, K.
AU - Finley, C.
AU - Fischer-Wasels, T.
AU - Flis, S.
AU - Fuchs, T.
AU - Glagla, M.
AU - Gaisser, T. K.
AU - Gaior, R.
AU - Gallagher, J.
AU - Gerhardt, L.
AU - Ghorbani, K.
AU - Gier, D.
AU - Gladstone, L.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Golup, G.
AU - Gonzalez, J. G.
AU - Góra, D.
AU - Grant, D.
AU - Gretskov, P.
AU - Groh, J. C.
AU - Groß, A.
AU - Ha, C.
AU - Haack, C.
AU - Haj Ismail, A.
AU - Hallgren, A.
AU - Halzen, F.
AU - Hansmann, B.
AU - Hanson, K.
AU - Hebecker, D.
AU - Heereman, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Hellwig, D.
AU - Hickford, S.
AU - Hignight, J.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Holzapfel, K.
AU - Homeier, A.
AU - Hoshina, K.
AU - Huang, F.
AU - Huber, M.
AU - Huelsnitz, W.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - In, S.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Japaridze, G. S.
AU - Jero, K.
AU - Jurkovic, M.
AU - Kaminsky, B.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Kauer, M.
AU - Keivani, A.
AU - Kelley, J. L.
AU - Kemp, J.
AU - Kheirandish, A.
AU - Kiryluk, J.
AU - Kläs, J.
AU - Klein, S. R.
AU - Kohnen, G.
AU - Kolanoski, H.
AU - Konietz, R.
AU - Koob, A.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Krings, K.
AU - Kroll, G.
AU - Kroll, M.
AU - Kunnen, J.
AU - Kurahashi, N.
AU - Kuwabara, T.
AU - Labare, M.
AU - Lanfranchi, J. L.
AU - Larson, M. J.
AU - Lesiak-Bzdak, M.
AU - Leuermann, M.
AU - Leuner, J.
AU - Lünemann, J.
AU - Madsen, J.
AU - Maggi, G.
AU - Mahn, K. B.M.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Maunu, R.
AU - McNally, F.
AU - Meagher, K.
AU - Medici, M.
AU - Meli, A.
AU - Menne, T.
AU - Merino, G.
AU - Meures, T.
AU - Miarecki, S.
AU - Middell, E.
AU - Middlemas, E.
AU - Miller, J.
AU - Mohrmann, L.
AU - Montaruli, T.
AU - Morse, R.
AU - Nahnhauer, R.
AU - Naumann, U.
AU - Niederhausen, H.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke, A.
AU - Olivas, A.
AU - Omairat, A.
AU - O’Murchadha, A.
AU - Palczewski, T.
AU - Paul, L.
AU - Pepper, J. A.
AU - Pérez de los Heros, C.
AU - Pfendner, C.
AU - Pieloth, D.
AU - Pinat, E.
AU - Posselt, J.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Pütz, J.
AU - Quinnan, M.
AU - Rädel, L.
AU - Rameez, M.
AU - Rawlins, K.
AU - Redl, P.
AU - Reimann, R.
AU - Relich, M.
AU - Resconi, E.
AU - Rhode, W.
AU - Richman, M.
AU - Richter, S.
AU - Riedel, B.
AU - Robertson, S.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ruzybayev, B.
AU - Ryckbosch, D.
AU - Saba, S. M.
AU - Sabbatini, L.
AU - Sander, H. G.
AU - Sandrock, A.
AU - Sandroos, J.
AU - Sarkar, S.
AU - Schatto, K.
AU - Scheriau, F.
AU - Schimp, M.
AU - Schmidt, T.
AU - Schmitz, M.
AU - Schoenen, S.
AU - Schöneberg, S.
AU - Schönwald, A.
AU - Schukraft, A.
AU - Schulte, L.
AU - Seckel, D.
AU - Seunarine, S.
AU - Shanidze, R.
AU - Smith, M. W.E.
AU - Soldin, D.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stahlberg, M.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stanisha, N. A.
AU - Stasik, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stößl, A.
AU - Strahler, E. A.
AU - Ström, R.
AU - Strotjohann, N. L.
AU - Sullivan, G. W.
AU - Sutherland, M.
AU - Taavola, H.
AU - Taboada, I.
AU - Ter-Antonyan, S.
AU - Terliuk, A.
AU - Tešić, G.
AU - Tilav, S.
AU - Toale, P. A.
AU - Tobin, M. N.
AU - Tosi, D.
AU - Tselengidou, M.
AU - Unger, E.
AU - Usner, M.
AU - Vallecorsa, S.
AU - van Eijndhoven, N.
AU - Vandenbroucke, J.
AU - van Santen, J.
AU - Vanheule, S.
AU - Veenkamp, J.
AU - Vehring, M.
AU - Voge, M.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallraff, M.
AU - Wandkowsky, N.
AU - Weaver, Ch
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whelan, B. J.
AU - Whitehorn, N.
AU - Wichary, C.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Wille, L.
AU - Williams, D. R.
AU - Wissing, H.
AU - Wolf, M.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Xu, Y.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zarzhitsky, P.
AU - Zoll, M.
N1 - Funding Information: We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF). Publisher Copyright: © 2015, The Author(s).
PY - 2015/10/1
Y1 - 2015/10/1
N2 - The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, (Formula presented.), for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4·10-24 cm3 s-1, and ≃2.6·10-23 cm3 s-1 for the νν¯ channel, respectively.
AB - The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, (Formula presented.), for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4·10-24 cm3 s-1, and ≃2.6·10-23 cm3 s-1 for the νν¯ channel, respectively.
UR - http://www.scopus.com/inward/record.url?scp=84945191700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84945191700&partnerID=8YFLogxK
U2 - 10.1140/epjc/s10052-015-3713-1
DO - 10.1140/epjc/s10052-015-3713-1
M3 - Article
AN - SCOPUS:84945191700
VL - 75
JO - European Physical Journal C
JF - European Physical Journal C
SN - 1434-6044
IS - 10
M1 - 492
ER -