@article{b0d64e59e3a24044b3f81d7900813e4b,
title = "Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube Neutrino Telescope",
abstract = "We report in detail on searches for eV-scale sterile neutrinos, in the context of a 3+1 model, using eight years of data from the IceCube Neutrino Telescope. By analyzing the reconstructed energies and zenith angles of 305,735 atmospheric νμ and ν¯μ events we construct confidence intervals in two analysis spaces: sin2(2θ24) vs Δm412 under the conservative assumption θ34=0; and sin2(2θ24) vs sin2(2θ34) given sufficiently large Δm412 that fast oscillation features are unresolvable. Detailed discussions of the event selection, systematic uncertainties, and fitting procedures are presented. No strong evidence for sterile neutrinos is found, and the best-fit likelihood is consistent with the no sterile neutrino hypothesis with a p value of 8% in the first analysis space and 19% in the second.",
author = "{(IceCube Collaboration)} and Aartsen, {M. G.} and R. Abbasi and M. Ackermann and J. Adams and Aguilar, {J. A.} and M. Ahlers and M. Ahrens and C. Alispach and Amin, {N. M.} and K. Andeen and T. Anderson and I. Ansseau and G. Anton and C. Arg{\"u}elles and J. Auffenberg and S. Axani and H. Bagherpour and X. Bai and {Balagopal V.}, A. and A. Barbano and Barwick, {S. W.} and B. Bastian and V. Basu and V. Baum and S. Baur and R. Bay and Beatty, {J. J.} and Becker, {K. H.} and {Becker Tjus}, J. and S. Benzvi and D. Berley and E. Bernardini and Besson, {D. Z.} and G. Binder and D. Bindig and E. Blaufuss and S. Blot and C. Bohm and S. B{\"o}ser and O. Botner and J. B{\"o}ttcher and E. Bourbeau and J. Bourbeau and F. Bradascio and J. Braun and S. Bron and J. Brostean-Kaiser and A. Burgman and Cowen, {D. F.} and D. Fox",
note = "Funding Information: We acknowledge the support from the following agencies: USA—U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin-Madison, Open Science Grid (OSG), Extreme Science and Engineering Discovery Environment (XSEDE), U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, and Astroparticle physics computational facility at Marquette University; Belgium—Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany—Bundesministerium f{\"u}r Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden—Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; Australia—Australian Research Council; Canada—Natural Sciences and Engineering Research Council of Canada, Calcul Qu{\'e}bec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Compute Canada; Denmark—Villum Fonden, Danish National Research Foundation (DNRF), Carlsberg Foundation; New Zealand—Marsden Fund; Japan—Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea—National Research Foundation of Korea (NRF); Switzerland—Swiss National Science Foundation (SNSF); United Kingdom—Department of Physics, University of Oxford. Publisher Copyright: {\textcopyright} 2020 authors. Published by the American Physical Society.",
year = "2020",
month = sep,
doi = "10.1103/PhysRevD.102.052009",
language = "English (US)",
volume = "102",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "5",
}