Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi

D. M. O'Keefe, David M. Sylvia

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.

Original languageEnglish (US)
Pages (from-to)115-122
Number of pages8
JournalMycorrhiza
Volume3
Issue number3
DOIs
StatePublished - Jul 1 1993

Fingerprint

Ipomoea batatas
sweet potatoes
potato
mycorrhizal fungi
Fungi
fungus
shoots
shoot
Plant Shoots
root hairs
planting
Growth
hair
colonization
root growth
inoculation
Claroideoglomus etunicatum
uptake mechanisms
Soil
Acaulospora

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Plant Science

Cite this

O'Keefe, D. M. ; Sylvia, David M. / Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi. In: Mycorrhiza. 1993 ; Vol. 3, No. 3. pp. 115-122.
@article{28056217c3cb4ce897e1f8cf683db39d,
title = "Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi",
abstract = "To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.",
author = "O'Keefe, {D. M.} and Sylvia, {David M.}",
year = "1993",
month = "7",
day = "1",
doi = "10.1007/BF00208919",
language = "English (US)",
volume = "3",
pages = "115--122",
journal = "Mycorrhiza",
issn = "0940-6360",
publisher = "Springer Verlag",
number = "3",

}

Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi. / O'Keefe, D. M.; Sylvia, David M.

In: Mycorrhiza, Vol. 3, No. 3, 01.07.1993, p. 115-122.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Seasonal dynamics of the association between sweet potato and vesicular-arbuscular mycorrhizal fungi

AU - O'Keefe, D. M.

AU - Sylvia, David M.

PY - 1993/7/1

Y1 - 1993/7/1

N2 - To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.

AB - To better understand the behavior of selected vesicular-arbuscular mycorrhizal (VAM) isolates in the field, we documented the growth of roots, root hairs, and VAM colonization of inoculated and noninoculated sweet potato plants (Ipomea batatas (L.) Lam. cv White Star) over a growing season. We also determined the seasonal dynamics of P and Zn uptake, and shoot and storage-root growth. Shoot cuttings were inoculated with an isolate of either Glomus etunicatum Becker and Gerdemann or Acaulospora rugosa Mortan, or were not inoculated, and were harvested 2, 4, 8, 13, 20, and 27 weeks after planting (WAP). At each harvest, roots were sampled at 0 to 30, 30 to 60, and 60 to 90 cm depths and at 0, 23, 83, and 116 cm from the base of the shoot. At the end of the study, the roots of three non-inoculated plants were sampled by soil horizon. Inoculation had no affect on shoot growth or total shoot uptake of P and Zn; shoot dry mass and P and Z content increased rapidly up to 20 WAP, while shoot length continued to increase through 27 WAP. Shoot-P concentration of plants inoculated with A. rugosa at 2 and 8 WAP were higher than the noninoculated plants, while shoot-Zn concentration was not affected by inoculation. Storage-root yields of inoculated plants were higher than yields for noninoculated plants. Root length density, and percentage of root length with root hairs and VAM colonization were highest and most dynamic near the base of the plant. Percentage of root length colonization by VAM fungi was highest in the E2 horizon, intermediate in the Bh horizon, and lowest in the Ap horizon. Percentage of root length with root hairs had the opposite pattern. Intensive measurements of root characteristics close to the base of the plant, and shoot P-content and concentration during the period of rapid yield production, provided the most useful data for evaluating the activity of effective isolates.

UR - http://www.scopus.com/inward/record.url?scp=0027803936&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027803936&partnerID=8YFLogxK

U2 - 10.1007/BF00208919

DO - 10.1007/BF00208919

M3 - Article

AN - SCOPUS:0027803936

VL - 3

SP - 115

EP - 122

JO - Mycorrhiza

JF - Mycorrhiza

SN - 0940-6360

IS - 3

ER -