Secure Caching and Delivery for Combination Networks with Asymmetric Connectivity

Ahmed A. Zewail, Aylin Yener

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We consider information theoretic security in a two-hop combination network where there are groups of end users with distinct degrees of connectivity served by a layer of relays. The model represents a network set up with users having access to asymmetric resources, here the number of relays that they are connected to, yet demand security guarantees uniformly. We study two security constraints separately and simultaneously: Secure delivery where the information must be kept confidential from an external entity that wiretaps the delivery phase; and secure caching where each cache-aided end-user can retrieve the file it requests and cannot obtain any information on files it does not. The achievable schemes we construct are multi-stage where each stage completes requests by a class of users.

Original languageEnglish (US)
Title of host publication2019 IEEE Information Theory Workshop, ITW 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538669006
DOIs
StatePublished - Aug 2019
Event2019 IEEE Information Theory Workshop, ITW 2019 - Visby, Sweden
Duration: Aug 25 2019Aug 28 2019

Publication series

Name2019 IEEE Information Theory Workshop, ITW 2019

Conference

Conference2019 IEEE Information Theory Workshop, ITW 2019
Country/TerritorySweden
CityVisby
Period8/25/198/28/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computational Theory and Mathematics
  • Computer Networks and Communications
  • Information Systems

Fingerprint

Dive into the research topics of 'Secure Caching and Delivery for Combination Networks with Asymmetric Connectivity'. Together they form a unique fingerprint.

Cite this