Seeing is Living? Rethinking the Security of Facial Liveness Verification in the Deepfake Era

Changjiang Li, Li Wang, Shouling Ji, Xuhong Zhang, Zhaohan Xi, Shanqing Guo, Ting Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Facial Liveness Verification (FLV) is widely used for identity authentication in many security-sensitive domains and offered as Platform-as-a-Service (PaaS) by leading cloud vendors. Yet, with the rapid advances in synthetic media techniques (e.g., deepfake), the security of FLV is facing unprecedented challenges, about which little is known thus far. To bridge this gap, in this paper, we conduct the first systematic study on the security of FLV in real-world settings. Specifically, we present LiveBugger, a new deepfake-powered attack framework that enables customizable, automated security evaluation of FLV. Leveraging LiveBugger, we perform a comprehensive empirical assessment of representative FLV platforms, leading to a set of interesting findings. For instance, most FLV APIs do not use anti-deepfake detection; even for those with such defenses, their effectiveness is concerning (e.g., it may detect high-quality synthesized videos but fail to detect low-quality ones). We then conduct an in-depth analysis of the factors impacting the attack performance of LiveBugger: a) the bias (e.g., gender or race) in FLV can be exploited to select victims; b) adversarial training makes deepfake more effective to bypass FLV; c) the input quality has a varying influence on different deepfake techniques to bypass FLV. Based on these findings, we propose a customized, two-stage approach that can boost the attack success rate by up to 70%. Further, we run proof-of-concept attacks on several representative applications of FLV (i.e., the clients of FLV APIs) to illustrate the practical implications: due to the vulnerability of the APIs, many downstream applications are vulnerable to deepfake. Finally, we discuss potential countermeasures to improve the security of FLV. Our findings have been confirmed by the corresponding vendors.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st USENIX Security Symposium, Security 2022
PublisherUSENIX Association
Pages2673-2690
Number of pages18
ISBN (Electronic)9781939133311
StatePublished - 2022
Event31st USENIX Security Symposium, Security 2022 - Boston, United States
Duration: Aug 10 2022Aug 12 2022

Publication series

NameProceedings of the 31st USENIX Security Symposium, Security 2022

Conference

Conference31st USENIX Security Symposium, Security 2022
Country/TerritoryUnited States
CityBoston
Period8/10/228/12/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Seeing is Living? Rethinking the Security of Facial Liveness Verification in the Deepfake Era'. Together they form a unique fingerprint.

Cite this