Segmenting the human genome based on states of neutral genetic divergence

Prabhani Kuruppumullage Don, Guruprasad Ananda, Francesca Chiaromonte, Kateryna D. Makova

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states - each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants-including those associated with cancer and other diseases-and to improve computational predictions of noncoding functional elements.

Original languageEnglish (US)
Pages (from-to)14699-14704
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume110
Issue number36
DOIs
StatePublished - Sep 3 2013

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Segmenting the human genome based on states of neutral genetic divergence'. Together they form a unique fingerprint.

Cite this