Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions

Jun Hong Park, Suresh Vishwanath, Steven Wolf, Kehao Zhang, Iljo Kwak, Mary Edmonds, Michael Breeden, Xinyu Liu, Margaret Dobrowolska, Jacek Furdyna, Joshua A. Robinson, Huili Grace Xing, Andrew C. Kummel

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

To fabricate practical devices based on semiconducting two-dimensional (2D) materials, the source, channel, and drain materials are exposed to ambient air. However, the response of layered 2D materials to air has not been fully elucidated at the molecular level. In the present report, the effects of air exposure on transition metal dichalcogenides (TMD) and metal dichalcogenides (MD) are studied using ultrahigh-vacuum scanning tunneling microscopy (STM). The effects of a 1-day ambient air exposure on MBE-grown WSe2, chemical vapor deposition (CVD)-grown MoS2, and MBE SnSe2 are compared. Both MBE-grown WSe2 and CVD-grown MoS2 display a selective air exposure response at the step edges, consistent with oxidation on WSe2 and adsorption of hydrocarbon on MoS2, while the terraces and domain/grain boundaries of both TMDs are nearly inert to ambient air. Conversely, MBE-grown SnSe2, an MD, is not stable in ambient air. After exposure in ambient air for 1 day, the entire surface of SnSe2 is decomposed to SnOx and SeOx, as seen with X-ray photoelectron spectroscopy. Since the oxidation enthalpy of all three materials is similar, the data is consistent with greater oxidation of SnSe2 being driven by the weak bonding of SnSe2.

Original languageEnglish (US)
Pages (from-to)29255-29264
Number of pages10
JournalACS Applied Materials and Interfaces
Volume9
Issue number34
DOIs
StatePublished - Aug 30 2017

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions'. Together they form a unique fingerprint.

Cite this