Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia

Sofia Fertuzinhos, Eljka Krsnik, Yuka Imamura Kawasawa, Mladen Roko Rain, Kenneth Y. Kwan, Jie Guang Chen, Milo Juda, Masaharu Hayashi, Nenad Sestan

Research output: Contribution to journalArticle

82 Scopus citations

Abstract

Cortical excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons follow substantially different developmental programs. In rodents, projection neurons originate from progenitors within the dorsal forebrain, whereas interneurons arise from progenitors in the ventral forebrain. In contrast, it has been proposed that in humans, the majority of cortical interneurons arise from progenitors within the dorsal forebrain, suggesting that their origin and migration is complex and evolutionarily divergent. However, whether molecularly defined human cortical interneuron subtypes originate from distinct progenitors, including those in the ventral forebrain, remains unknown. Furthermore, abnormalities in cortical interneurons have been linked to human disorders, yet no distinct cell population selective loss has been reported. Here we show that cortical interneurons expressing nitric oxide synthase 1, neuropeptide Y, and somatostatin, are either absent or substantially reduced in fetal and infant cases of human holoprosencephaly (HPE) with severe ventral forebrain hypoplasia. Notably, another interneuron subtype normally abundant from the early fetal period, marked by calretinin expression, and different subtypes of projection neuron were present in the cortex of control and HPE brains. These findings have important implications for the understanding of neuronal pathogenesis underlying the clinical manifestations associated with HPE and the developmental origins of human cortical interneuron diversity.

Original languageEnglish (US)
Pages (from-to)2196-2207
Number of pages12
JournalCerebral Cortex
Volume19
Issue number9
DOIs
Publication statusPublished - Sep 1 2009

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Cognitive Neuroscience
  • Cellular and Molecular Neuroscience

Cite this