Self-balancing by design in hybrid electrochemical battery packs

Nur Adilah Aljunid, Michelle A.K. Denlinger, Hosam K. Fathy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper explores the novel concept that a hybrid battery pack containing both lithium-ion (Li-ion) and vanadium redox flow (VRF) cells can self-balance automatically, by design. The proposed hybrid pack connects the Li-ion and VRF cells in parallel to form “hybrid cells”, then connects these hybrid cells into series strings. The basic idea is to exploit the recirculation and mixing of the VRF electrolytes to establish an internal feedback loop. This feedback loop attenuates state of charge (SOC) imbalances in both the VRF battery and the lithium-ion cells connected to it. This self-balancing occurs automatically, by design. This stands in sharp contrast to today’s battery pack balancing approaches, all of which require either (passive/active) power electronics or an external photovoltaic source to balance battery cell SOCs. The paper demonstrates this self-balancing property using a physics-based simulation of the proposed hybrid pack. To the best of the authors’knowledge, this work represents the first report in the literature of self-balancing “by design” in electrochemical battery packs.

Original languageEnglish (US)
Title of host publicationControl and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851906
DOIs
StatePublished - Jan 1 2018
EventASME 2018 Dynamic Systems and Control Conference, DSCC 2018 - Atlanta, United States
Duration: Sep 30 2018Oct 3 2018

Publication series

NameASME 2018 Dynamic Systems and Control Conference, DSCC 2018
Volume2

Other

OtherASME 2018 Dynamic Systems and Control Conference, DSCC 2018
CountryUnited States
CityAtlanta
Period9/30/1810/3/18

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Self-balancing by design in hybrid electrochemical battery packs'. Together they form a unique fingerprint.

  • Cite this

    Aljunid, N. A., Denlinger, M. A. K., & Fathy, H. K. (2018). Self-balancing by design in hybrid electrochemical battery packs. In Control and Optimization of Connected and Automated Ground Vehicles; Dynamic Systems and Control Education; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Energy Systems; Estimation and Identification; Intelligent Transportation and Vehicles; Manufacturing; Mechatronics; Modeling and Control of IC Engines and Aftertreatment Systems; Modeling and Control of IC Engines and Powertrain Systems; Modeling and Management of Power Systems (ASME 2018 Dynamic Systems and Control Conference, DSCC 2018; Vol. 2). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DSCC2018-9106