Self-incompatibility in Petunia

A self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding

Ning Wang, Teh-hui Kao

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Many flowering plants producing bisexual flowers have adopted self-incompatibility (SI), a reproductive strategy which allows pistils to distinguish between self and nonself pollen, and to only permit nonself pollen to effect fertilization. To date, three different SI mechanisms have been identified, and this article focuses on the S-RNase-based mechanism using Petunia (Solanaceae) as a model. The genetic basis of this type of SI was established nearly a century ago; the polymorphic S-locus specifies the genetic identity of pollen and the pistil. Molecular genetic studies carried out since the late 1980s have led to the identification of the polymorphic genes at the S-locus that control self/nonself-recognition between pollen and the pistil. The S-RNase gene, which controls pistil specificity, was identified first, and subsequent sequencing of the S-locus region containing S-RNase led to the identification of the S-locus F-box (SLF) gene (now named SLF1). A transgenic approach was used to show that S2-SLF1 (SLF1 of S2-halotype) of Petunia inflata controls pollen specificity. The S-locus contains additional pollen-expressed F-box genes that show sequence similarity with SLF1, and initially they were thought not to be involved in pollen specificity. However, further studies of SLF1 suggested that it is not the only pollen specificity gene. Indeed, it has recently been shown that two previously identified SLF-like genes in P. inflata (now named SLF2 and SLF3) and a yet unknown number of additional SLF-like genes (named SLF4, SLF5, etc.) collaboratively function to control pollen specificity. The significance and implications of this new finding are discussed.

Original languageEnglish (US)
Pages (from-to)267-275
Number of pages9
JournalWiley Interdisciplinary Reviews: Developmental Biology
Volume1
Issue number2
DOIs
StatePublished - Mar 1 2012

Fingerprint

F-Box Proteins
Petunia
Inbreeding
Protein S
Ribonucleases
Pollen
Genes
Solanaceae
Internal-External Control
Pedigree
Fertilization
Molecular Biology

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Cite this

@article{6d6e77f84c35481aad29401229bd6773,
title = "Self-incompatibility in Petunia: A self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding",
abstract = "Many flowering plants producing bisexual flowers have adopted self-incompatibility (SI), a reproductive strategy which allows pistils to distinguish between self and nonself pollen, and to only permit nonself pollen to effect fertilization. To date, three different SI mechanisms have been identified, and this article focuses on the S-RNase-based mechanism using Petunia (Solanaceae) as a model. The genetic basis of this type of SI was established nearly a century ago; the polymorphic S-locus specifies the genetic identity of pollen and the pistil. Molecular genetic studies carried out since the late 1980s have led to the identification of the polymorphic genes at the S-locus that control self/nonself-recognition between pollen and the pistil. The S-RNase gene, which controls pistil specificity, was identified first, and subsequent sequencing of the S-locus region containing S-RNase led to the identification of the S-locus F-box (SLF) gene (now named SLF1). A transgenic approach was used to show that S2-SLF1 (SLF1 of S2-halotype) of Petunia inflata controls pollen specificity. The S-locus contains additional pollen-expressed F-box genes that show sequence similarity with SLF1, and initially they were thought not to be involved in pollen specificity. However, further studies of SLF1 suggested that it is not the only pollen specificity gene. Indeed, it has recently been shown that two previously identified SLF-like genes in P. inflata (now named SLF2 and SLF3) and a yet unknown number of additional SLF-like genes (named SLF4, SLF5, etc.) collaboratively function to control pollen specificity. The significance and implications of this new finding are discussed.",
author = "Ning Wang and Teh-hui Kao",
year = "2012",
month = "3",
day = "1",
doi = "10.1002/wdev.10",
language = "English (US)",
volume = "1",
pages = "267--275",
journal = "Wiley Interdisciplinary Reviews: Developmental Biology",
issn = "1759-7684",
publisher = "John Wiley and Sons Ltd",
number = "2",

}

TY - JOUR

T1 - Self-incompatibility in Petunia

T2 - A self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding

AU - Wang, Ning

AU - Kao, Teh-hui

PY - 2012/3/1

Y1 - 2012/3/1

N2 - Many flowering plants producing bisexual flowers have adopted self-incompatibility (SI), a reproductive strategy which allows pistils to distinguish between self and nonself pollen, and to only permit nonself pollen to effect fertilization. To date, three different SI mechanisms have been identified, and this article focuses on the S-RNase-based mechanism using Petunia (Solanaceae) as a model. The genetic basis of this type of SI was established nearly a century ago; the polymorphic S-locus specifies the genetic identity of pollen and the pistil. Molecular genetic studies carried out since the late 1980s have led to the identification of the polymorphic genes at the S-locus that control self/nonself-recognition between pollen and the pistil. The S-RNase gene, which controls pistil specificity, was identified first, and subsequent sequencing of the S-locus region containing S-RNase led to the identification of the S-locus F-box (SLF) gene (now named SLF1). A transgenic approach was used to show that S2-SLF1 (SLF1 of S2-halotype) of Petunia inflata controls pollen specificity. The S-locus contains additional pollen-expressed F-box genes that show sequence similarity with SLF1, and initially they were thought not to be involved in pollen specificity. However, further studies of SLF1 suggested that it is not the only pollen specificity gene. Indeed, it has recently been shown that two previously identified SLF-like genes in P. inflata (now named SLF2 and SLF3) and a yet unknown number of additional SLF-like genes (named SLF4, SLF5, etc.) collaboratively function to control pollen specificity. The significance and implications of this new finding are discussed.

AB - Many flowering plants producing bisexual flowers have adopted self-incompatibility (SI), a reproductive strategy which allows pistils to distinguish between self and nonself pollen, and to only permit nonself pollen to effect fertilization. To date, three different SI mechanisms have been identified, and this article focuses on the S-RNase-based mechanism using Petunia (Solanaceae) as a model. The genetic basis of this type of SI was established nearly a century ago; the polymorphic S-locus specifies the genetic identity of pollen and the pistil. Molecular genetic studies carried out since the late 1980s have led to the identification of the polymorphic genes at the S-locus that control self/nonself-recognition between pollen and the pistil. The S-RNase gene, which controls pistil specificity, was identified first, and subsequent sequencing of the S-locus region containing S-RNase led to the identification of the S-locus F-box (SLF) gene (now named SLF1). A transgenic approach was used to show that S2-SLF1 (SLF1 of S2-halotype) of Petunia inflata controls pollen specificity. The S-locus contains additional pollen-expressed F-box genes that show sequence similarity with SLF1, and initially they were thought not to be involved in pollen specificity. However, further studies of SLF1 suggested that it is not the only pollen specificity gene. Indeed, it has recently been shown that two previously identified SLF-like genes in P. inflata (now named SLF2 and SLF3) and a yet unknown number of additional SLF-like genes (named SLF4, SLF5, etc.) collaboratively function to control pollen specificity. The significance and implications of this new finding are discussed.

UR - http://www.scopus.com/inward/record.url?scp=84877987970&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84877987970&partnerID=8YFLogxK

U2 - 10.1002/wdev.10

DO - 10.1002/wdev.10

M3 - Article

VL - 1

SP - 267

EP - 275

JO - Wiley Interdisciplinary Reviews: Developmental Biology

JF - Wiley Interdisciplinary Reviews: Developmental Biology

SN - 1759-7684

IS - 2

ER -