Semi-stable reduction implies minimality of the resultant

Lucien Szpiro, Michael Tepper, Phillip Williams

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

For a dynamical system on Pn over a number field or a function field, we show that semi-stable reduction implies the minimality of the resultant. We use this to show that every such dynamical system over a number field admits a globally minimal presentation.

Original languageEnglish (US)
Pages (from-to)489-498
Number of pages10
JournalJournal of Algebra
Volume397
DOIs
StatePublished - Jan 1 2014

Fingerprint

Minimality
Number field
Dynamical system
Imply
Function Fields
Presentation

All Science Journal Classification (ASJC) codes

  • Algebra and Number Theory

Cite this

Szpiro, Lucien ; Tepper, Michael ; Williams, Phillip. / Semi-stable reduction implies minimality of the resultant. In: Journal of Algebra. 2014 ; Vol. 397. pp. 489-498.
@article{2d75208c2ea54d808226ed415038a29b,
title = "Semi-stable reduction implies minimality of the resultant",
abstract = "For a dynamical system on Pn over a number field or a function field, we show that semi-stable reduction implies the minimality of the resultant. We use this to show that every such dynamical system over a number field admits a globally minimal presentation.",
author = "Lucien Szpiro and Michael Tepper and Phillip Williams",
year = "2014",
month = "1",
day = "1",
doi = "10.1016/j.jalgebra.2013.09.008",
language = "English (US)",
volume = "397",
pages = "489--498",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",

}

Semi-stable reduction implies minimality of the resultant. / Szpiro, Lucien; Tepper, Michael; Williams, Phillip.

In: Journal of Algebra, Vol. 397, 01.01.2014, p. 489-498.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Semi-stable reduction implies minimality of the resultant

AU - Szpiro, Lucien

AU - Tepper, Michael

AU - Williams, Phillip

PY - 2014/1/1

Y1 - 2014/1/1

N2 - For a dynamical system on Pn over a number field or a function field, we show that semi-stable reduction implies the minimality of the resultant. We use this to show that every such dynamical system over a number field admits a globally minimal presentation.

AB - For a dynamical system on Pn over a number field or a function field, we show that semi-stable reduction implies the minimality of the resultant. We use this to show that every such dynamical system over a number field admits a globally minimal presentation.

UR - http://www.scopus.com/inward/record.url?scp=84884952531&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884952531&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2013.09.008

DO - 10.1016/j.jalgebra.2013.09.008

M3 - Article

AN - SCOPUS:84884952531

VL - 397

SP - 489

EP - 498

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -