Sequential design of UAV fuselage pods using bounding aerodynamic models

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

In this work, a Sequential Decision Process (SDP) is applied to perform fuselage design using Computational Fluid Dynamics (CFD). The SDP uses models to provide two-sided estimates that attempt to bound the exact solution, ultimately converging to an optimal design space to be analyzed with models of increased fidelity. The present work proposes the use of laminar and turbulent physics in CFD models to form lower and upper bounds on drag calculations, respectively. These bounding models are then used in a formal SDP to cull the design space, focusing the region of interest for increased fidelity modeling and analysis. Increasing mesh resolution is used to increase fidelity, creating a multi-fidelity approach to aerodynamic shape design. In this work the SDP-CFD design approach is applied to two design problems: (1) drag minimization of a fairing with a defined thickness and (2) drag per unit volume minimization of a fairing. The results of this study demonstrate that the SDP-CFD approach can accurately and quickly improve the fuselage design.

Original languageEnglish (US)
Title of host publicationSymposia
Subtitle of host publicationGas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858066
DOIs
StatePublished - Jan 1 2017
EventASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017 - Waikoloa, United States
Duration: Jul 30 2017Aug 3 2017

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1C-2017
ISSN (Print)0888-8116

Other

OtherASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017
CountryUnited States
CityWaikoloa
Period7/30/178/3/17

Fingerprint

Fuselages
Unmanned aerial vehicles (UAV)
Aerodynamics
Computational fluid dynamics
Drag
Dynamic models
Physics

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this

Valenti, J. D., Kinzel, M. P., & Miller, S. W. (2017). Sequential design of UAV fuselage pods using bounding aerodynamic models. In Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes (American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM; Vol. 1C-2017). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/FEDSM2017-69361
Valenti, Justin D. ; Kinzel, Michael P. ; Miller, Simon Walter. / Sequential design of UAV fuselage pods using bounding aerodynamic models. Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. American Society of Mechanical Engineers (ASME), 2017. (American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM).
@inproceedings{29efe09667b242a78c2fce69a154361c,
title = "Sequential design of UAV fuselage pods using bounding aerodynamic models",
abstract = "In this work, a Sequential Decision Process (SDP) is applied to perform fuselage design using Computational Fluid Dynamics (CFD). The SDP uses models to provide two-sided estimates that attempt to bound the exact solution, ultimately converging to an optimal design space to be analyzed with models of increased fidelity. The present work proposes the use of laminar and turbulent physics in CFD models to form lower and upper bounds on drag calculations, respectively. These bounding models are then used in a formal SDP to cull the design space, focusing the region of interest for increased fidelity modeling and analysis. Increasing mesh resolution is used to increase fidelity, creating a multi-fidelity approach to aerodynamic shape design. In this work the SDP-CFD design approach is applied to two design problems: (1) drag minimization of a fairing with a defined thickness and (2) drag per unit volume minimization of a fairing. The results of this study demonstrate that the SDP-CFD approach can accurately and quickly improve the fuselage design.",
author = "Valenti, {Justin D.} and Kinzel, {Michael P.} and Miller, {Simon Walter}",
year = "2017",
month = "1",
day = "1",
doi = "10.1115/FEDSM2017-69361",
language = "English (US)",
series = "American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM",
publisher = "American Society of Mechanical Engineers (ASME)",
booktitle = "Symposia",

}

Valenti, JD, Kinzel, MP & Miller, SW 2017, Sequential design of UAV fuselage pods using bounding aerodynamic models. in Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, vol. 1C-2017, American Society of Mechanical Engineers (ASME), ASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017, Waikoloa, United States, 7/30/17. https://doi.org/10.1115/FEDSM2017-69361

Sequential design of UAV fuselage pods using bounding aerodynamic models. / Valenti, Justin D.; Kinzel, Michael P.; Miller, Simon Walter.

Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. American Society of Mechanical Engineers (ASME), 2017. (American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM; Vol. 1C-2017).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

TY - GEN

T1 - Sequential design of UAV fuselage pods using bounding aerodynamic models

AU - Valenti, Justin D.

AU - Kinzel, Michael P.

AU - Miller, Simon Walter

PY - 2017/1/1

Y1 - 2017/1/1

N2 - In this work, a Sequential Decision Process (SDP) is applied to perform fuselage design using Computational Fluid Dynamics (CFD). The SDP uses models to provide two-sided estimates that attempt to bound the exact solution, ultimately converging to an optimal design space to be analyzed with models of increased fidelity. The present work proposes the use of laminar and turbulent physics in CFD models to form lower and upper bounds on drag calculations, respectively. These bounding models are then used in a formal SDP to cull the design space, focusing the region of interest for increased fidelity modeling and analysis. Increasing mesh resolution is used to increase fidelity, creating a multi-fidelity approach to aerodynamic shape design. In this work the SDP-CFD design approach is applied to two design problems: (1) drag minimization of a fairing with a defined thickness and (2) drag per unit volume minimization of a fairing. The results of this study demonstrate that the SDP-CFD approach can accurately and quickly improve the fuselage design.

AB - In this work, a Sequential Decision Process (SDP) is applied to perform fuselage design using Computational Fluid Dynamics (CFD). The SDP uses models to provide two-sided estimates that attempt to bound the exact solution, ultimately converging to an optimal design space to be analyzed with models of increased fidelity. The present work proposes the use of laminar and turbulent physics in CFD models to form lower and upper bounds on drag calculations, respectively. These bounding models are then used in a formal SDP to cull the design space, focusing the region of interest for increased fidelity modeling and analysis. Increasing mesh resolution is used to increase fidelity, creating a multi-fidelity approach to aerodynamic shape design. In this work the SDP-CFD design approach is applied to two design problems: (1) drag minimization of a fairing with a defined thickness and (2) drag per unit volume minimization of a fairing. The results of this study demonstrate that the SDP-CFD approach can accurately and quickly improve the fuselage design.

UR - http://www.scopus.com/inward/record.url?scp=85033775393&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85033775393&partnerID=8YFLogxK

U2 - 10.1115/FEDSM2017-69361

DO - 10.1115/FEDSM2017-69361

M3 - Conference contribution

T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

BT - Symposia

PB - American Society of Mechanical Engineers (ASME)

ER -

Valenti JD, Kinzel MP, Miller SW. Sequential design of UAV fuselage pods using bounding aerodynamic models. In Symposia: Gas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes. American Society of Mechanical Engineers (ASME). 2017. (American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM). https://doi.org/10.1115/FEDSM2017-69361