Service Placement and Request Scheduling for Data-intensive Applications in Edge Clouds

Vajiheh Farhadi, Fidan Mehmeti, Ting He, Tom La Porta, Hana Khamfroush, Shiqiang Wang, Kevin S. Chan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Mobile edge computing allows wireless users to exploit the power of cloud computing without the large communication delay. To serve data-intensive applications (e.g., augmented reality, video analytics) from the edge, we need, in addition to CPU cycles and memory for computation, storage resource for storing server data and network bandwidth for receiving user-provided data. Moreover, the data placement needs to be adapted over time to serve time-varying demands, while considering system stability and operation cost. We address this problem by proposing a two-time-scale framework that jointly optimizes service (data code) placement and request scheduling, under storage, communication, computation, and budget constraints. We fully characterize the complexity of our problem by analyzing the hardness of various cases. By casting our problem as a set function optimization, we develop a polynomial-time algorithm that achieves a constant-factor approximation under certain conditions. Extensive synthetic and trace-driven simulations show that the proposed algorithm achieves 90% of the optimal performance.

Original languageEnglish (US)
Title of host publicationINFOCOM 2019 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1279-1287
Number of pages9
ISBN (Electronic)9781728105154
DOIs
StatePublished - Apr 2019
Event2019 IEEE Conference on Computer Communications, INFOCOM 2019 - Paris, France
Duration: Apr 29 2019May 2 2019

Publication series

NameProceedings - IEEE INFOCOM
Volume2019-April
ISSN (Print)0743-166X

Conference

Conference2019 IEEE Conference on Computer Communications, INFOCOM 2019
CountryFrance
CityParis
Period4/29/195/2/19

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Service Placement and Request Scheduling for Data-intensive Applications in Edge Clouds'. Together they form a unique fingerprint.

  • Cite this

    Farhadi, V., Mehmeti, F., He, T., Porta, T. L., Khamfroush, H., Wang, S., & Chan, K. S. (2019). Service Placement and Request Scheduling for Data-intensive Applications in Edge Clouds. In INFOCOM 2019 - IEEE Conference on Computer Communications (pp. 1279-1287). [8737368] (Proceedings - IEEE INFOCOM; Vol. 2019-April). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/INFOCOM.2019.8737368