Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity

Peter J. Butler, Gerard Norwich, Sheldon Weinbaum, Shu Chien

Research output: Contribution to journalArticle

146 Citations (Scopus)

Abstract

Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (τ) on the lipid fluidity of 1,1′-dihexadecyl-3,3,3′-tetramethylindocarbocyanme perchlorate [DiIC16(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-τ of 10 or 20 dyn/cm2, and after the cessation of τ. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-τ of 10 dyn/cm2, D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of τ. D returned to near control values within 5 s after cessation of τ. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-τ of 10 dyn/cm2 elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-τ of 20 dyn/cm2 caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume280
Issue number4 49-4
StatePublished - Jun 5 2001

Fingerprint

Membrane Fluidity
Fluidity
Endothelial cells
Cell membranes
Shear stress
Endothelial Cells
Cell Membrane
Fluorescence Recovery After Photobleaching
Cell Nucleus
Membranes
Photobleaching
Membrane Proteins
Maintenance
Lipids
Shearing
Microscopes
Blood
Fluorescence
Modulation
Recovery

All Science Journal Classification (ASJC) codes

  • Physiology
  • Cell Biology

Cite this

@article{cdf08b5412054ceea1c832a35daa312a,
title = "Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity",
abstract = "Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (τ) on the lipid fluidity of 1,1′-dihexadecyl-3,3,3′-tetramethylindocarbocyanme perchlorate [DiIC16(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-τ of 10 or 20 dyn/cm2, and after the cessation of τ. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-τ of 10 dyn/cm2, D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of τ. D returned to near control values within 5 s after cessation of τ. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-τ of 10 dyn/cm2 elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-τ of 20 dyn/cm2 caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.",
author = "Butler, {Peter J.} and Gerard Norwich and Sheldon Weinbaum and Shu Chien",
year = "2001",
month = "6",
day = "5",
language = "English (US)",
volume = "280",
journal = "American Journal of Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "4 49-4",

}

Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. / Butler, Peter J.; Norwich, Gerard; Weinbaum, Sheldon; Chien, Shu.

In: American Journal of Physiology - Cell Physiology, Vol. 280, No. 4 49-4, 05.06.2001.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity

AU - Butler, Peter J.

AU - Norwich, Gerard

AU - Weinbaum, Sheldon

AU - Chien, Shu

PY - 2001/6/5

Y1 - 2001/6/5

N2 - Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (τ) on the lipid fluidity of 1,1′-dihexadecyl-3,3,3′-tetramethylindocarbocyanme perchlorate [DiIC16(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-τ of 10 or 20 dyn/cm2, and after the cessation of τ. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-τ of 10 dyn/cm2, D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of τ. D returned to near control values within 5 s after cessation of τ. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-τ of 10 dyn/cm2 elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-τ of 20 dyn/cm2 caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.

AB - Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (τ) on the lipid fluidity of 1,1′-dihexadecyl-3,3,3′-tetramethylindocarbocyanme perchlorate [DiIC16(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-τ of 10 or 20 dyn/cm2, and after the cessation of τ. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-τ of 10 dyn/cm2, D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of τ. D returned to near control values within 5 s after cessation of τ. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-τ of 10 dyn/cm2 elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-τ of 20 dyn/cm2 caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.

UR - http://www.scopus.com/inward/record.url?scp=0034996180&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034996180&partnerID=8YFLogxK

M3 - Article

C2 - 11245613

AN - SCOPUS:0034996180

VL - 280

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6143

IS - 4 49-4

ER -