SHOCK BREAKOUT and EARLY LIGHT CURVES of TYPE II-P SUPERNOVAE OBSERVED with KEPLER

P. M. Garnavich, B. E. Tucker, A. Rest, E. J. Shaya, R. P. Olling, D. Kasen, A. Villar

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ±0.4 and 13.3 ±0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ±20 Ro) to be significantly smaller than that for KSN2011d (490 ±20 Ro), but both have similar explosion energies of 2.0 ±0.3 ×1051 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10-4Mo yr-1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

Original languageEnglish (US)
Article number23
JournalAstrophysical Journal
Volume820
Issue number1
DOIs
StatePublished - Mar 20 2016

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this