Signatures of information scrambling in the dynamics of the entanglement spectrum

T. Rakovszky, S. Gopalakrishnan, S. A. Parameswaran, F. Pollmann

Research output: Contribution to journalArticlepeer-review

Abstract

We examine the time evolution of the entanglement spectrum of a small subsystem of a nonintegrable spin chain following a quench from a product state. We identify signatures in this entanglement spectrum of the distinct dynamical velocities (related to entanglement and operator spreading) that control thermalization. We show that the onset of level repulsion in the entanglement spectrum occurs on different timescales depending on the "entanglement energy," and that this dependence reflects the shape of the operator front. Level repulsion spreads across the entire entanglement spectrum on a timescale that is parametrically shorter than that for full thermalization of the subsystem. This timescale is also close to when the mutual information between individual spins at the ends of the subsystem reaches its maximum. We provide an analytical understanding of this phenomenon and show supporting numerical data for both random unitary circuits and a microscopic Hamiltonian.

Original languageEnglish (US)
Article number125115
JournalPhysical Review B
Volume100
Issue number12
DOIs
StatePublished - Sep 6 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Signatures of information scrambling in the dynamics of the entanglement spectrum'. Together they form a unique fingerprint.

Cite this