Simulation of seepage through fixed porous media using the smoothed particle hydrodynamics method

Elnaz Kermani, Tong Qiu

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

Seepage of water through soil media, if not controlled, may lead to erosion of earth dams and their foundations and eventually can result in instability and failure. Thus, understanding of flow of water through porous media and accurately modeling of this phenomenon are of great importance in geotechnical engineering. In this study, smoothed particle hydrodynamics (SPH) method is utilized to simulate a 2D pressure-driven vertical flow through fixed porous media. To model fluid motion, the spatially averaged Navier-Stokes equations are implemented into SPH formulations. The spatial heterogeneity and anisotropy of pore space are introduced in the model using local porosity values imported from granular samples created using the discrete element method (DEM). Fluid-solid coupling is considered using classic semi-empirical equations. A SPH model is developed using one-way coupling method, to simulate flow of water through fixed porous media under various hydraulic gradients caused by different mechanisms (e.g., pressure gradient, body force). The effects of porosity values and hydraulic gradients on discharge velocity are studied. The results are compared against published simulation results to validate the developed SPH model.

Original languageEnglish (US)
Pages (from-to)699-708
Number of pages10
JournalGeotechnical Special Publication
Issue numberGSP 280
DOIs
StatePublished - Jan 1 2017
EventGeotechnical Frontiers 2017 - Orlando, United States
Duration: Mar 12 2017Mar 15 2017

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Architecture
  • Building and Construction
  • Geotechnical Engineering and Engineering Geology

Fingerprint Dive into the research topics of 'Simulation of seepage through fixed porous media using the smoothed particle hydrodynamics method'. Together they form a unique fingerprint.

Cite this