Simulation of the near-field region of film cooling jets using RANS and hybrid URANS/LES models

Hosein Foroutan, Savas Yavuzkurt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

This paper investigates the flow field and heat transfer in the near-field region of film cooling jets through numerical simulations using RANS and hybrid URANS/LES models. Detailed simulations of flow and thermal fields of a single row of film cooling cylindrical holes with 30o inline injection on a flat plate are obtained for low (M=0.5) and high (M=1.5) blowing ratios under high free stream turbulence (10%). The realizable k-ε model is used within the RANS framework and a realizable k-ε-based detached eddy simulation (DES) is used as a hybrid URANS/LES model. Both models are used together with the two-layer zonal model for near-wall simulations. Steady and time-averaged unsteady film cooling effectiveness obtained using these models in ANSYS-FLUENT are compared with available experimental data. It is shown that hybrid URANS/LES models (DES in the present paper) predict more mixing both in the wall-normal and spanwise directions compared to RANS models, while unsteady asymmetric vortical structures of the flow can also be captured. The turbulent heat flux components predicted by the DES model are higher than those obtained by the RANS simulations, resulting in enhanced turbulent heat transfer between the jet and mainstream, and consequently better predictions of the effectiveness. Furthermore, the unsteady physics of jet and crossflow interactions and the jet lift-off under high free stream turbulence is studied using the present DES results.

Original languageEnglish (US)
Title of host publicationHeat Transfer
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791845721
DOIs
StatePublished - Jan 1 2014
EventASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014 - Dusseldorf, Germany
Duration: Jun 16 2014Jun 20 2014

Publication series

NameProceedings of the ASME Turbo Expo
Volume5B

Other

OtherASME Turbo Expo 2014: Turbine Technical Conference and Exposition, GT 2014
CountryGermany
CityDusseldorf
Period6/16/146/20/14

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint Dive into the research topics of 'Simulation of the near-field region of film cooling jets using RANS and hybrid URANS/LES models'. Together they form a unique fingerprint.

Cite this