Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC 4: Potential for Enhancing Nocturnal Ice Cloud Retrievals

Patrick Minnis, Gang Hong, J. Kirk Ayers, William L. Smith, Christopher R. Yost, Andrew J. Heymsfield, Gerald M. Heymsfield, Dennis L. Hlavka, Michael D. King, Errol Korn, Matthew J. McGill, Henry B. Selkirk, Anne M. Thompson, Lin Tian, Ping Yang

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 μm can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses τ < ~6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of τ and ice particle size D e to optically thick clouds. Measurements from an imager, an interferometer, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC 4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval potential of infrared radiances over optically thick ice clouds. Simulations based on coincident in situ measurements and combined cloud τ from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to τ up to ~20 and that for ice clouds having τ > 20, the 3.7-10.8 μm and 3.7-6.7 μm BTDs are the most sensitive to D e. Satellite imagery appears to be consistent with these results suggesting that τ and D e could be retrieved for greater optical thicknesses than previously assumed. But, because of sensitivity of the BTDs to uncertainties in the atmospheric profiles of temperature, humidity, and ice water content, and sensor noise, exploiting the small BTD signals in retrieval algorithms will be very challenging.

Original languageEnglish (US)
Pages (from-to)3022-3054
Number of pages33
JournalRemote Sensing
Issue number10
StatePublished - Oct 2012

All Science Journal Classification (ASJC) codes

  • Earth and Planetary Sciences(all)


Dive into the research topics of 'Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC <sup>4</sup>: Potential for Enhancing Nocturnal Ice Cloud Retrievals'. Together they form a unique fingerprint.

Cite this