Simultaneous coagulation and break-up using constant-N Monte Carlo

Kangtaek Lee, Themis Matsoukas

Research output: Contribution to journalArticlepeer-review

109 Scopus citations

Abstract

We present a new Monte Carlo method for solving the population balance with multiple growth processes. The method samples a constant number of particles regardless of whether the actual growth process results in increase or decrease of the particle concentration. By decoupling the size of the simulated sample from the concentration of the actual system we achieve constant accuracy throughout the simulation. We apply this method to coagulation with simultaneous binary break-up. We examine the results for three cases with analytical solutions and show that the constant-N method yields accurate results. Copyright (C) 2000 Elsevier Science S.A.

Original languageEnglish (US)
Pages (from-to)82-89
Number of pages8
JournalPowder Technology
Volume110
Issue number1-2
DOIs
StatePublished - May 1 2000

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Simultaneous coagulation and break-up using constant-N Monte Carlo'. Together they form a unique fingerprint.

Cite this