Single-atom doping of MoS2with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach

Yu Lei, Derrick Butler, Michael C. Lucking, Fu Zhang, Tunan Xia, Kazunori Fujisawa, Tomotaroh Granzier-Nakajima, Rodolfo Cruz-Silva, Morinobu Endo, Humberto Terrones, Mauricio Terrones, Aida Ebrahimi

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS2 synthesized via a scalable two-step approach (with Mn ∼2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (MntopMo) and Mn substituting a Mo atom (MnMo). At low dopamine concentrations, physisorption on MnMo dominates. At higher concentrations, dopamine chemisorbs on MntopMo, which is consistent with calculations of the dopamine binding energy (2.91 eV for MntopMo versus 0.65 eV for MnMo). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors.

Original languageEnglish (US)
Article numberabc4250
JournalScience Advances
Volume6
Issue number32
DOIs
StatePublished - Aug 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Single-atom doping of MoS<sub>2</sub>with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach'. Together they form a unique fingerprint.

Cite this