Site characterization and detector development for the Greenland neutrino observatory

Stephanie A. Wissel, J. Avv, K. Bechtol, C. Deaconu, P. Gorham, C. Miki, R. Nichol, A. Romero-Wolf, C. Schlupf, D. Saltzberg, A. Vieregg, G. Varner

Research output: Contribution to journalConference articlepeer-review

4 Scopus citations

Abstract

The PeV neutrinos discovered by IceCube are of astrophysical origin, and their progenitors could be any of several source classes, including active galactic nuclei, gamma-ray bursts, or pulsars. Such high-energy accelerators would produce neutrinos up to hundreds of PeV, which motivates the development of neutrino telescopes with the sensitivity, energy resolution, and pointing resolution required to distinguish among models of the IceCube neutrinos as well as cosmogenic neutrinos. Radio detection of Askaryan radiation from neutrino showers in ice is well-suited to the detection of the highest energy neutrinos, with degree-scale pointing resolution and the ability to build sparse arrays, but the energy threshold of current experiments is currently set by the temperature of the ice. The uncorrelated thermal noise can be reduced by combining the signals from several antennas in a phased array. We report here on a June 2015 trip to Summit Station In Greenland for testing a phased array of dipoles, as well as the sensitivity of the array and background measurements of the site and discuss prospects for the Greenland Neutrino Observatory (GNO).

Original languageEnglish (US)
Article number1150
JournalProceedings of Science
Volume30-July-2015
StatePublished - Jan 1 2015
Event34th International Cosmic Ray Conference, ICRC 2015 - The Hague, Netherlands
Duration: Jul 30 2015Aug 6 2015

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Site characterization and detector development for the Greenland neutrino observatory'. Together they form a unique fingerprint.

Cite this