Soil amendments and fertilizer source effects on creeping bentgrass establishment, soil microbial activity, thatch, and disease

John Edward Kaminski, III, Peter H. Dernoeden, Cale A. Bigelow

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Natural organic fertilizers require microbial degradation for nitrogen (N) release, but their ability to promote rapid turfgrass establishment has not been well documented in newly constructed sand-based rootzones. This 2-year field study evaluated the influence of two general fertilizer and soil amendment programs for their effect on establishment and quality of three creeping bentgrass (Agrostis stolonifera L.) cultivars - 'Crenshaw', 'Penn G-2', and 'Providence'. Turf was grown on a 4 sand : 1 sphagnum peat (by volume) rootzone mixture. Four treatments consisting of surface-applied synthetic fertilizer (SF; mostly water-soluble N in 1999 and methylene urea thereafter); surface-applied hydrolyzed poultry meal (PM); preplant-incorporated granular humate (GH) with surface-applied SF; and preplant-incorporated PM with surface-applied PM. Turf cover data collected 42 days after seeding (DAS) showed that the rate of establishment was SF+GH incorporated = SF surface-applied >PM surface-applied + PM incorporated >PM surface-applied. Turf cover was ≥96% among all treatments 90 DAS. Rootmass density was greater (18% to 29%) at 103 DAS in GH incorporated plots combined with SF, when compared to all other treatments, but no rootmass differences subsequently were observed. Soil microbial activity generally was highest in PM-treated plots during the first 14 months following seeding, but not thereafter. Turf treated with SF had less microdochium patch (Microdochium nivale (Fr.) Samuels and I.C. Hallett) and more bentgrass dead spot (Ophiosphaerella agrostis Dernoeden, M.P.S. Camara, N.R. O'Neill, van Berkum et M.E. Palm), when compared to PM-treated plots. Slightly less thatch developed in PM-treated turf when compared to plots receiving SF alone by the end of the second year. Penn G-2 and SF generally provided the best overall turf quality. This study demonstrated the beneficial effects of readily available N from SF for rapid establishment and that preplant incorporation of GH initially aided root development.

Original languageEnglish (US)
Pages (from-to)620-626
Number of pages7
JournalHortScience
Volume39
Issue number3
StatePublished - Jun 1 2004

Fingerprint

thatch
poultry meal
Agrostis stolonifera
soil amendments
microbial activity
fertilizers
lawns and turf
humates
soil
sowing
Agrostis
Ophiosphaerella
Microdochium
sand
Monographella nivalis
Sphagnum
turf grasses
organic fertilizers
biodegradation
peat

All Science Journal Classification (ASJC) codes

  • Horticulture

Cite this

@article{489a79e81c0145b4baafab65de3a7816,
title = "Soil amendments and fertilizer source effects on creeping bentgrass establishment, soil microbial activity, thatch, and disease",
abstract = "Natural organic fertilizers require microbial degradation for nitrogen (N) release, but their ability to promote rapid turfgrass establishment has not been well documented in newly constructed sand-based rootzones. This 2-year field study evaluated the influence of two general fertilizer and soil amendment programs for their effect on establishment and quality of three creeping bentgrass (Agrostis stolonifera L.) cultivars - 'Crenshaw', 'Penn G-2', and 'Providence'. Turf was grown on a 4 sand : 1 sphagnum peat (by volume) rootzone mixture. Four treatments consisting of surface-applied synthetic fertilizer (SF; mostly water-soluble N in 1999 and methylene urea thereafter); surface-applied hydrolyzed poultry meal (PM); preplant-incorporated granular humate (GH) with surface-applied SF; and preplant-incorporated PM with surface-applied PM. Turf cover data collected 42 days after seeding (DAS) showed that the rate of establishment was SF+GH incorporated = SF surface-applied >PM surface-applied + PM incorporated >PM surface-applied. Turf cover was ≥96{\%} among all treatments 90 DAS. Rootmass density was greater (18{\%} to 29{\%}) at 103 DAS in GH incorporated plots combined with SF, when compared to all other treatments, but no rootmass differences subsequently were observed. Soil microbial activity generally was highest in PM-treated plots during the first 14 months following seeding, but not thereafter. Turf treated with SF had less microdochium patch (Microdochium nivale (Fr.) Samuels and I.C. Hallett) and more bentgrass dead spot (Ophiosphaerella agrostis Dernoeden, M.P.S. Camara, N.R. O'Neill, van Berkum et M.E. Palm), when compared to PM-treated plots. Slightly less thatch developed in PM-treated turf when compared to plots receiving SF alone by the end of the second year. Penn G-2 and SF generally provided the best overall turf quality. This study demonstrated the beneficial effects of readily available N from SF for rapid establishment and that preplant incorporation of GH initially aided root development.",
author = "{Kaminski, III}, {John Edward} and Dernoeden, {Peter H.} and Bigelow, {Cale A.}",
year = "2004",
month = "6",
day = "1",
language = "English (US)",
volume = "39",
pages = "620--626",
journal = "Hortscience: A Publication of the American Society for Hortcultural Science",
issn = "0018-5345",
publisher = "American Society for Horticultural Science",
number = "3",

}

Soil amendments and fertilizer source effects on creeping bentgrass establishment, soil microbial activity, thatch, and disease. / Kaminski, III, John Edward; Dernoeden, Peter H.; Bigelow, Cale A.

In: HortScience, Vol. 39, No. 3, 01.06.2004, p. 620-626.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Soil amendments and fertilizer source effects on creeping bentgrass establishment, soil microbial activity, thatch, and disease

AU - Kaminski, III, John Edward

AU - Dernoeden, Peter H.

AU - Bigelow, Cale A.

PY - 2004/6/1

Y1 - 2004/6/1

N2 - Natural organic fertilizers require microbial degradation for nitrogen (N) release, but their ability to promote rapid turfgrass establishment has not been well documented in newly constructed sand-based rootzones. This 2-year field study evaluated the influence of two general fertilizer and soil amendment programs for their effect on establishment and quality of three creeping bentgrass (Agrostis stolonifera L.) cultivars - 'Crenshaw', 'Penn G-2', and 'Providence'. Turf was grown on a 4 sand : 1 sphagnum peat (by volume) rootzone mixture. Four treatments consisting of surface-applied synthetic fertilizer (SF; mostly water-soluble N in 1999 and methylene urea thereafter); surface-applied hydrolyzed poultry meal (PM); preplant-incorporated granular humate (GH) with surface-applied SF; and preplant-incorporated PM with surface-applied PM. Turf cover data collected 42 days after seeding (DAS) showed that the rate of establishment was SF+GH incorporated = SF surface-applied >PM surface-applied + PM incorporated >PM surface-applied. Turf cover was ≥96% among all treatments 90 DAS. Rootmass density was greater (18% to 29%) at 103 DAS in GH incorporated plots combined with SF, when compared to all other treatments, but no rootmass differences subsequently were observed. Soil microbial activity generally was highest in PM-treated plots during the first 14 months following seeding, but not thereafter. Turf treated with SF had less microdochium patch (Microdochium nivale (Fr.) Samuels and I.C. Hallett) and more bentgrass dead spot (Ophiosphaerella agrostis Dernoeden, M.P.S. Camara, N.R. O'Neill, van Berkum et M.E. Palm), when compared to PM-treated plots. Slightly less thatch developed in PM-treated turf when compared to plots receiving SF alone by the end of the second year. Penn G-2 and SF generally provided the best overall turf quality. This study demonstrated the beneficial effects of readily available N from SF for rapid establishment and that preplant incorporation of GH initially aided root development.

AB - Natural organic fertilizers require microbial degradation for nitrogen (N) release, but their ability to promote rapid turfgrass establishment has not been well documented in newly constructed sand-based rootzones. This 2-year field study evaluated the influence of two general fertilizer and soil amendment programs for their effect on establishment and quality of three creeping bentgrass (Agrostis stolonifera L.) cultivars - 'Crenshaw', 'Penn G-2', and 'Providence'. Turf was grown on a 4 sand : 1 sphagnum peat (by volume) rootzone mixture. Four treatments consisting of surface-applied synthetic fertilizer (SF; mostly water-soluble N in 1999 and methylene urea thereafter); surface-applied hydrolyzed poultry meal (PM); preplant-incorporated granular humate (GH) with surface-applied SF; and preplant-incorporated PM with surface-applied PM. Turf cover data collected 42 days after seeding (DAS) showed that the rate of establishment was SF+GH incorporated = SF surface-applied >PM surface-applied + PM incorporated >PM surface-applied. Turf cover was ≥96% among all treatments 90 DAS. Rootmass density was greater (18% to 29%) at 103 DAS in GH incorporated plots combined with SF, when compared to all other treatments, but no rootmass differences subsequently were observed. Soil microbial activity generally was highest in PM-treated plots during the first 14 months following seeding, but not thereafter. Turf treated with SF had less microdochium patch (Microdochium nivale (Fr.) Samuels and I.C. Hallett) and more bentgrass dead spot (Ophiosphaerella agrostis Dernoeden, M.P.S. Camara, N.R. O'Neill, van Berkum et M.E. Palm), when compared to PM-treated plots. Slightly less thatch developed in PM-treated turf when compared to plots receiving SF alone by the end of the second year. Penn G-2 and SF generally provided the best overall turf quality. This study demonstrated the beneficial effects of readily available N from SF for rapid establishment and that preplant incorporation of GH initially aided root development.

UR - http://www.scopus.com/inward/record.url?scp=2942620927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2942620927&partnerID=8YFLogxK

M3 - Article

VL - 39

SP - 620

EP - 626

JO - Hortscience: A Publication of the American Society for Hortcultural Science

JF - Hortscience: A Publication of the American Society for Hortcultural Science

SN - 0018-5345

IS - 3

ER -