Soil CO2 and O2 Concentrations Illuminate the relative importance of weathering and respiration to Seasonal Soil Gas Fluctuations

Caitlin Hodges, Hyojin Kim, Susan L. Brantley, Jason Kaye

Research output: Contribution to journalArticle

Abstract

Soil CO2 and O2 cycles are coupled in some processes (e.g., respiration) but uncoupled in others (e.g., silicate weathering). One benchmark for interpreting soil biogeochemical processes affected by soil pCO2 and pO2 is to calculate the apparent respiratory quotient (ARQ). When aerobic respiration and diffusion are the dominant controls on gas concentrations, ARQ equals 1; ARQ deviates from 1 when other processes dominate soil CO2 and O2 chemistry. Here, we used ARQ to understand lithologic, hillslope, and seasonal controls on soil gases at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We measured soil pCO2 and pO2 at three depths from the soil surface to bedrock across catenas in one shale and one sandstone watershed over three growing seasons. We found that both parent lithology and hillslope position significantly affect soil gas concentrations and ARQ. Soil pCO2 was highest (>5%) and pO2 was lowest (<16%) in the valley floors. Controlling for depth, pCO2 was higher and pO2 was lower across all sites in the sandstone watershed. We attribute this pattern to higher macroporosity in sandstone lithologies, which results in greater root respiration at depth. We recorded seasonal variation in ARQ at all sites, with ARQ rising above 1 during July through September, and dipping below 1 in the early spring. We hypothesize that this seasonal fluctuation arises from anaerobic respiration in reducing microsites July through September when the soils are wet and demand for O2 is high, followed by oxidation of reduced species when the soils drain and re-oxygenate. We estimate that this anaerobic respiration in microsites contributes 36 g C m-2 yr-1 to the soil C flux. Our results provide evidence for a conceptual model of metal cycling in temperate watersheds and point to the importance of anaerobic respiration to the carbon flux from forest soils.

Original languageEnglish (US)
Pages (from-to)1167-1180
Number of pages14
JournalSoil Science Society of America Journal
Volume83
Issue number4
DOIs
StatePublished - Jan 1 2019

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Soil Science

Cite this