Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems

Carry S. Crosson, Sunkyung Choi, Jon Chorover, Mary Kay Amistadi, Peggy A. O'Day, Karl Todd Mueller

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH ∼13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.

Original languageEnglish (US)
Pages (from-to)723-732
Number of pages10
JournalJournal of Physical Chemistry B
Volume110
Issue number2
DOIs
StatePublished - Jan 19 2006

Fingerprint

Kaolin
Magic angle spinning
kaolinite
Kaolinite
Aluminosilicates
Aluminum
metal spinning
Nuclear magnetic resonance
solid state
nuclear magnetic resonance
aluminum
Cations
Positive ions
sodalite
Silicon
magnetic resonance spectroscopy
Nuclear magnetic resonance spectroscopy
cations
solid phases
field strength

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films
  • Materials Chemistry

Cite this

Crosson, Carry S. ; Choi, Sunkyung ; Chorover, Jon ; Amistadi, Mary Kay ; O'Day, Peggy A. ; Mueller, Karl Todd. / Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems. In: Journal of Physical Chemistry B. 2006 ; Vol. 110, No. 2. pp. 723-732.
@article{60f2fde2f95d49cf9cb0be044889dbb1,
title = "Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems",
abstract = "The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH ∼13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.",
author = "Crosson, {Carry S.} and Sunkyung Choi and Jon Chorover and Amistadi, {Mary Kay} and O'Day, {Peggy A.} and Mueller, {Karl Todd}",
year = "2006",
month = "1",
day = "19",
doi = "10.1021/jp055401l",
language = "English (US)",
volume = "110",
pages = "723--732",
journal = "Journal of Physical Chemistry B Materials",
issn = "1520-6106",
publisher = "American Chemical Society",
number = "2",

}

Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems. / Crosson, Carry S.; Choi, Sunkyung; Chorover, Jon; Amistadi, Mary Kay; O'Day, Peggy A.; Mueller, Karl Todd.

In: Journal of Physical Chemistry B, Vol. 110, No. 2, 19.01.2006, p. 723-732.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Solid-state NMR identification and quantification of newly formed aluminosilicate phases in weathered kaolinite systems

AU - Crosson, Carry S.

AU - Choi, Sunkyung

AU - Chorover, Jon

AU - Amistadi, Mary Kay

AU - O'Day, Peggy A.

AU - Mueller, Karl Todd

PY - 2006/1/19

Y1 - 2006/1/19

N2 - The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH ∼13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.

AB - The weathering of a specimen kaolinite clay was studied over the course of 369 d via solid-state 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and high-field 27Al MAS NMR. The chosen baseline solution conditions (0.05 mol kg-1 of Al, 2 mol kg-1 of Na+, 1 mol kg-1 of NO3-, 1 mol kg-1 of OH-, and pH ∼13.8) approximate those of solutions leaking from waste tanks at the Hanford Site in Richland, WA. Nonradioactive Cs and Sr cations were added to this synthetic tank waste leachate (STWL) solution at concentrations of 10-3, 10-4, and 10-5 molal (m) to represent their radionuclide counterparts. The transformations of silicon- and aluminum-containing solid phase species were monitored quantitatively by using NMR spectroscopy, with the resulting spectra directly reporting the influence of the initial Cs and Sr on formation and transformation of the neo-formed solids. At the lowest concentration of Cs and Sr employed (10-5 m in each cation) peaks consistent with the formation of zeolite-like minerals were detected via 29Si and 27Al MAS NMR as early as 33 d. At concentrations of 10-3 m in each cation, new silicon species are not detected until 93 d, although neophases containing four-coordinate aluminum were detectable at earlier reaction times via 27Al MAS NMR. At the highest magnetic field strengths employed in this NMR study, deconvolutions of resonances detected in the tetrahedral region of the 27Al MAS spectra yielded multiple components, indicating the existence of at least four new aluminum-containing phases. Two of these phases are identified as sodalite and cancrinite through comparison with diffuse-reflectance infrared (DRIFT) spectra and powder X-ray diffraction (XRD) results, while a third phase may correlate with a previously detected aluminum-rich chabazite phase. All measurable solid reaction products have been quantified via their 27Al MAS resonances acquired at high magnetic field strengths (17.6 T), and the quantitative nature of the 27Al NMR data shows that cancrinite growth increases while sodalite reaches a steady state with respect to total aluminum in the solid phases. The data also relate the coupling of Cs sorption to the ripening of feldspathoid phases in this heterogeneous system as a function of time, and illustrate the important influence of co-contaminants on the environmental reaction kinetics studied here.

UR - http://www.scopus.com/inward/record.url?scp=31544440689&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=31544440689&partnerID=8YFLogxK

U2 - 10.1021/jp055401l

DO - 10.1021/jp055401l

M3 - Article

VL - 110

SP - 723

EP - 732

JO - Journal of Physical Chemistry B Materials

JF - Journal of Physical Chemistry B Materials

SN - 1520-6106

IS - 2

ER -