Quelques invariants des structures localement conformément symplectiques

Translated title of the contribution: Some invariants of locally conformally symplectic structures

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The integration of the exponential of the extended Lee homomorphism yields a homomorphism ℒ on the group of automorphisms of a locally conformal symplectic structure S, whose value on an automorphism is the similitude ratio of some lifting on a symplectic manifold canonically associated with S. On the kernel of ℒ, we construct the Calabi invariant in terms of the cA-cohomology.

Original languageFrench
Pages (from-to)29-32
Number of pages4
JournalComptes Rendus de l'Academie des Sciences - Series I: Mathematics
Volume332
Issue number1
DOIs
StatePublished - Jan 1 2001

Fingerprint

Symplectic Structure
Homomorphism
Conformal Structure
Invariant
Symplectic Manifold
Automorphism
Cohomology
Automorphisms
kernel

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{d51285a3abcb493fb669053bef10bc4f,
title = "Quelques invariants des structures localement conform{\'e}ment symplectiques",
abstract = "The integration of the exponential of the extended Lee homomorphism yields a homomorphism ℒ on the group of automorphisms of a locally conformal symplectic structure S, whose value on an automorphism is the similitude ratio of some lifting on a symplectic manifold canonically associated with S. On the kernel of ℒ, we construct the Calabi invariant in terms of the cA-cohomology.",
author = "Augustin Banyaga",
year = "2001",
month = "1",
day = "1",
doi = "10.1016/S0764-4442(00)01767-5",
language = "French",
volume = "332",
pages = "29--32",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "1",

}

TY - JOUR

T1 - Quelques invariants des structures localement conformément symplectiques

AU - Banyaga, Augustin

PY - 2001/1/1

Y1 - 2001/1/1

N2 - The integration of the exponential of the extended Lee homomorphism yields a homomorphism ℒ on the group of automorphisms of a locally conformal symplectic structure S, whose value on an automorphism is the similitude ratio of some lifting on a symplectic manifold canonically associated with S. On the kernel of ℒ, we construct the Calabi invariant in terms of the cA-cohomology.

AB - The integration of the exponential of the extended Lee homomorphism yields a homomorphism ℒ on the group of automorphisms of a locally conformal symplectic structure S, whose value on an automorphism is the similitude ratio of some lifting on a symplectic manifold canonically associated with S. On the kernel of ℒ, we construct the Calabi invariant in terms of the cA-cohomology.

UR - http://www.scopus.com/inward/record.url?scp=0035216361&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035216361&partnerID=8YFLogxK

U2 - 10.1016/S0764-4442(00)01767-5

DO - 10.1016/S0764-4442(00)01767-5

M3 - Article

AN - SCOPUS:0035216361

VL - 332

SP - 29

EP - 32

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 1

ER -