### Abstract

We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.

Original language | English (US) |
---|---|

Pages (from-to) | 368-378 |

Number of pages | 11 |

Journal | Journal of Geometry and Physics |

Volume | 19 |

Issue number | 4 |

DOIs | |

State | Published - Jan 1 1996 |

### Fingerprint

### All Science Journal Classification (ASJC) codes

- Mathematical Physics
- Physics and Astronomy(all)
- Geometry and Topology

### Cite this

*Journal of Geometry and Physics*,

*19*(4), 368-378. https://doi.org/10.1016/0393-0440(95)00039-9

}

*Journal of Geometry and Physics*, vol. 19, no. 4, pp. 368-378. https://doi.org/10.1016/0393-0440(95)00039-9

**Some remarks on the integration of the poisson algebra.** / Banyaga, Augustin; Donato, Paul.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Some remarks on the integration of the poisson algebra

AU - Banyaga, Augustin

AU - Donato, Paul

PY - 1996/1/1

Y1 - 1996/1/1

N2 - We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.

AB - We prove the integrability of the Poisson algebra of functions with compact supports of a noncompact manifold. We also determine a Lie subalgebra of vector fields which, weakly, integrate the Poisson algebra of a not necessarily compact manifold covered by an exact symplectic manifold.

UR - http://www.scopus.com/inward/record.url?scp=0030211032&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030211032&partnerID=8YFLogxK

U2 - 10.1016/0393-0440(95)00039-9

DO - 10.1016/0393-0440(95)00039-9

M3 - Article

AN - SCOPUS:0030211032

VL - 19

SP - 368

EP - 378

JO - Journal of Geometry and Physics

JF - Journal of Geometry and Physics

SN - 0393-0440

IS - 4

ER -