TY - JOUR
T1 - Specific Class I HLA Supertypes but Not HLA Zygosity or Expression Are Associated with Outcomes following HLA-Matched Allogeneic Hematopoietic Cell Transplant
T2 - HLA Supertypes Impact Allogeneic HCT Outcomes
AU - Camacho-Bydume, Christine
AU - Wang, Tao
AU - Sees, Jennifer A.
AU - Fernandez-Viña, Marcelo
AU - Abid, Muhammad Bilal
AU - Askar, Medhat
AU - Beitinjaneh, Amer
AU - Brown, Valerie
AU - Castillo, Paul
AU - Chhabra, Saurabh
AU - Gadalla, Shahinaz M.
AU - Hsu, Jing Mei
AU - Kamoun, Malek
AU - Lazaryan, Aleksandr
AU - Nishihori, Taiga
AU - Page, Kristin
AU - Schetelig, Johannes
AU - Fleischhauer, Katharina
AU - Marsh, Steven G.E.
AU - Paczesny, Sophie
AU - Spellman, Stephen R.
AU - Lee, Stephanie J.
AU - Hsu, Katharine C.
N1 - Funding Information:
Financial disclosure: This work was supported by funding from National Institutes of Health (NIH) U01 AI069197 and Leukemia & Lymphoma Society to K.H. and the Cancer Center Core grant (NIH P30 CA008748) to Memorial Sloan Kettering Cancer Center. The CIBMTR is supported primarily by Public Health Service U24CA076518 from the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Allergy and Infectious Diseases (NIAID); U24HL138660 from the NHLBI and NCI; OT3HL147741, R21HL140314, and U01HL128568 from the NHLBI; HHSH250201700006C, SC1MC31881-01-00, and HHSH250201700007C from the Health Resources and Services Administration (HRSA); and N00014-18-1-2850, N00014-18-1-2888, and N00014-20-1-2705 from the Office of Naval Research. Additional federal support is provided by P01CA111412, R01CA152108, R01CA215134, R01CA218285, R01CA231141, R01HL126589, R01AI128775, R01HL129472, R01HL130388, R01HL131731, U01AI069197, U01AI126612, and BARDA. Support is also provided by Be The Match Foundation, Boston Children's Hospital, Dana Farber, Japan Hematopoietic Cell Transplantation Data Center, St. Baldrick's Foundation, the National Marrow Donor Program, the Medical College of Wisconsin, and from the following commercial entities: AbbVie; Actinium Pharmaceuticals, Inc.; Adaptive Biotechnologies; Adienne SA; Allovir, Inc.; Amgen, Inc.; Anthem, Inc.; Astellas Pharma US; AstraZeneca; Atara Biotherapeutics, Inc.; bluebird bio, Inc.; Bristol Myers Squibb Co.; Celgene Corp.; Chimerix, Inc.; CSL Behring; CytoSen Therapeutics, Inc.; Daiichi Sankyo Co., Ltd.; Gamida-Cell, Ltd.; Genzyme; GlaxoSmithKline (GSK); HistoGenetics, Inc.; Incyte Corporation; Janssen Biotech, Inc.; Janssen Pharmaceuticals, Inc.; Janssen/Johnson & Johnson; Jazz Pharmaceuticals, Inc.; Kiadis Pharma; Kite Pharma; Kyowa Kirin; Legend Biotech; Magenta Therapeutics; Mallinckrodt LLC; Medac GmbH; Merck & Company, Inc.; Merck Sharp & Dohme Corp.; Mesoblast; Millennium, the Takeda Oncology Co.; Miltenyi Biotec, Inc.; Novartis Oncology; Novartis Pharmaceuticals Corporation; Omeros Corporation; Oncoimmune, Inc.; Orca Biosystems, Inc.; Pfizer, Inc.; Phamacyclics, LLC; Regeneron Pharmaceuticals, Inc.; REGiMMUNE Corp.; Sanofi Genzyme; Seattle Genetics; Sobi, Inc.; Takeda Oncology; Takeda Pharma; Terumo BCT; Viracor Eurofins; and Xenikos BV. The views expressed in this article do not reflect the official policy or position of the NIH, the Department of the Navy, the Department of Defense, HRSA, or any other agency of the U.S. government.
Funding Information:
Financial disclosure: This work was supported by funding from National Institutes of Health (NIH) U01 AI069197 and Leukemia & Lymphoma Society to K.H. and the Cancer Center Core grant (NIH P30 CA008748) to Memorial Sloan Kettering Cancer Center. The CIBMTR is supported primarily by Public Health Service U24CA076518 from the National Cancer Institute (NCI), the National Heart, Lung and Blood Institute (NHLBI), and the National Institute of Allergy and Infectious Diseases (NIAID); U24HL138660 from the NHLBI and NCI; OT3HL147741, R21HL140314, and U01HL128568 from the NHLBI; HHSH250201700006C, SC1MC31881-01-00, and HHSH250201700007C from the Health Resources and Services Administration (HRSA); and N00014-18-1-2850, N00014-18-1-2888, and N00014-20-1-2705 from the Office of Naval Research. Additional federal support is provided by P01CA111412, R01CA152108, R01CA215134, R01CA218285, R01CA231141, R01HL126589, R01AI128775, R01HL129472, R01HL130388, R01HL131731, U01AI069197, U01AI126612, and BARDA. Support is also provided by Be The Match Foundation, Boston Children's Hospital, Dana Farber, Japan Hematopoietic Cell Transplantation Data Center, St. Baldrick's Foundation, the National Marrow Donor Program, the Medical College of Wisconsin, and from the following commercial entities: AbbVie; Actinium Pharmaceuticals, Inc.; Adaptive Biotechnologies; Adienne SA; Allovir, Inc.; Amgen, Inc.; Anthem, Inc.; Astellas Pharma US; AstraZeneca; Atara Biotherapeutics, Inc.; bluebird bio, Inc.; Bristol Myers Squibb Co.; Celgene Corp.; Chimerix, Inc.; CSL Behring; CytoSen Therapeutics, Inc.; Daiichi Sankyo Co. Ltd.; Gamida-Cell, Ltd.; Genzyme; GlaxoSmithKline (GSK); HistoGenetics, Inc.; Incyte Corporation; Janssen Biotech, Inc.; Janssen Pharmaceuticals, Inc.; Janssen/Johnson & Johnson; Jazz Pharmaceuticals, Inc.; Kiadis Pharma; Kite Pharma; Kyowa Kirin; Legend Biotech; Magenta Therapeutics; Mallinckrodt LLC; Medac GmbH; Merck & Company, Inc.; Merck Sharp & Dohme Corp.; Mesoblast; Millennium, the Takeda Oncology Co.; Miltenyi Biotec, Inc.; Novartis Oncology; Novartis Pharmaceuticals Corporation; Omeros Corporation; Oncoimmune, Inc.; Orca Biosystems, Inc.; Pfizer, Inc.; Phamacyclics, LLC; Regeneron Pharmaceuticals, Inc.; REGiMMUNE Corp.; Sanofi Genzyme; Seattle Genetics; Sobi, Inc.; Takeda Oncology; Takeda Pharma; Terumo BCT; Viracor Eurofins; and Xenikos BV. The views expressed in this article do not reflect the official policy or position of the NIH, the Department of the Navy, the Department of Defense, HRSA, or any other agency of the U.S. government. Conflict of interest statement: S.P. has a patent on ?Methods of Detection of Graft-versus-Host Disease? licensed to Viracor-IBT Laboratories. T.N. has research with Novartis and Karypopharm. All other authors have no other relevant conflicts of interest to declare. Authorship statement: C.CB. and K.H. devised the study design, interpreted the data, and wrote the manuscript. Members of the CIBMTR immunobiology working committee assisted in the study design. T.W. and J.A.S. provided statistical support. All authors interpreted and discussed the results and reviewed the manuscript. Financial disclosure: See Acknowledgments on page XX.
Publisher Copyright:
© 2020 American Society for Transplantation and Cellular Therapy
PY - 2020
Y1 - 2020
N2 - Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
AB - Maximizing the probability of antigen presentation to T cells through diversity in HLAs can enhance immune responsiveness and translate into improved clinical outcomes, as evidenced by the association of heterozygosity and supertypes at HLA class I loci with improved survival in patients with advanced solid tumors treated with immune checkpoint inhibitors. We investigated the impact of HLA heterozygosity, supertypes, and surface expression on outcomes in adult and pediatric patients with acute myeloid leukemia (AML), myelodysplastic syndrome, acute lymphoblastic leukemia, and non-Hodgkin lymphoma who underwent 8/8 HLA-matched, T cell replete, unrelated, allogeneic hematopoietic cell transplant (HCT) from 2000 to 2015 using patient data reported to the Center for International Blood and Marrow Transplant Research. HLA class I heterozygosity and HLA expression were not associated with overall survival, relapse, transplant-related mortality (TRM), disease-free survival (DFS), and acute graft-versus-host disease following HCT. The HLA-B62 supertype was associated with decreased TRM in the entire patient cohort (hazard ratio [HR], 0.79; 95% CI, 0.69 to 0.90; P = .00053). The HLA-B27 supertype was associated with worse DFS in patients with AML (HR = 1.21; 95% CI, 1.10 to 1.32; P = .00005). These findings suggest that the survival benefit of HLA heterozygosity seen in solid tumor patients receiving immune checkpoint inhibitors does not extend to patients undergoing allogeneic HCT. Certain HLA supertypes, however, are associated with TRM and DFS, suggesting that similarities in peptide presentation between supertype members play a role in these outcomes. Beyond implications for prognosis following HCT, these findings support the further investigation of these HLA supertypes and the specific immune peptides important for transplant outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85098109122&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098109122&partnerID=8YFLogxK
U2 - 10.1016/j.bbmt.2020.10.010
DO - 10.1016/j.bbmt.2020.10.010
M3 - Article
C2 - 33053450
AN - SCOPUS:85098109122
JO - Biology of Blood and Marrow Transplantation
JF - Biology of Blood and Marrow Transplantation
SN - 1083-8791
ER -