Spin orbit correlations and the structure of the nucleon

H. Avakian, B. Parsamyan, Alexey Prokudin

Research output: Contribution to journalArticle

Abstract

Extensive experimental measurements of spin and azimuthal asymmetries in various processes have stimulated theoretical interest and progress in the studies of the nucleon structure. The interpretation of experimental data in terms of parton distribution functions, generalized to describe transverse momentum and spatial parton distributions, is one of the main remaining challenges of modern nuclear physics. These new parton distribution and fragmentation functions encode the motion and the position of partons and are often referred to as three-dimensional distributions describing the three-dimensional (3D) structure of the nucleon. Understanding of the production mechanism and performing phenomenological studies compatible with factorization theorems using minimal model assumptions are goals of the analysis of the experimental data. HERMES and COMPASS Collaborations and experiments at Jefferson Lab have collected a wealth of polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. These data play a crucial role in current understanding of nucleon spin phenomena as they cover a broad kinematical range. The Jefferson Lab 12 GeV upgrade data on polarized and unpolarized SIDIS will have a remarkably higher precision at large parton fractional momentum x compared to the existing data. We argue that both experimental and phenomenological communities will benefit from the development of a comprehensive extraction framework that will facilitate the extraction of the 3D nucleon structure, help understand various assumptions in extraction and data analysis, help to insure the model independence of the experimental data and validate the extracted functions. In this review we present the latest developments in the field of the spin asymmetries with emphasis on observables beyond the leading twist in SIDIS, indispensable for studies of the complex 3D nucleon structure, and discuss different components involved in precision extraction of the 3D partonic distribution and fragmentation functions.

Original languageEnglish (US)
Pages (from-to)1-48
Number of pages48
JournalRivista del Nuovo Cimento
Volume42
Issue number1
DOIs
StatePublished - Jan 1 2019

Fingerprint

partons
orbits
inelastic scattering
distribution functions
fragmentation
asymmetry
COMPASS (programming language)
nuclear physics
factorization
transverse momentum
theorems
momentum

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Cite this

Avakian, H. ; Parsamyan, B. ; Prokudin, Alexey. / Spin orbit correlations and the structure of the nucleon. In: Rivista del Nuovo Cimento. 2019 ; Vol. 42, No. 1. pp. 1-48.
@article{dbdbe0ccc4104960a93428b93241c9fb,
title = "Spin orbit correlations and the structure of the nucleon",
abstract = "Extensive experimental measurements of spin and azimuthal asymmetries in various processes have stimulated theoretical interest and progress in the studies of the nucleon structure. The interpretation of experimental data in terms of parton distribution functions, generalized to describe transverse momentum and spatial parton distributions, is one of the main remaining challenges of modern nuclear physics. These new parton distribution and fragmentation functions encode the motion and the position of partons and are often referred to as three-dimensional distributions describing the three-dimensional (3D) structure of the nucleon. Understanding of the production mechanism and performing phenomenological studies compatible with factorization theorems using minimal model assumptions are goals of the analysis of the experimental data. HERMES and COMPASS Collaborations and experiments at Jefferson Lab have collected a wealth of polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. These data play a crucial role in current understanding of nucleon spin phenomena as they cover a broad kinematical range. The Jefferson Lab 12 GeV upgrade data on polarized and unpolarized SIDIS will have a remarkably higher precision at large parton fractional momentum x compared to the existing data. We argue that both experimental and phenomenological communities will benefit from the development of a comprehensive extraction framework that will facilitate the extraction of the 3D nucleon structure, help understand various assumptions in extraction and data analysis, help to insure the model independence of the experimental data and validate the extracted functions. In this review we present the latest developments in the field of the spin asymmetries with emphasis on observables beyond the leading twist in SIDIS, indispensable for studies of the complex 3D nucleon structure, and discuss different components involved in precision extraction of the 3D partonic distribution and fragmentation functions.",
author = "H. Avakian and B. Parsamyan and Alexey Prokudin",
year = "2019",
month = "1",
day = "1",
doi = "10.1393/ncr/i2019-10155-3",
language = "English (US)",
volume = "42",
pages = "1--48",
journal = "La Rivista del Nuovo Cimento",
issn = "0393-697X",
publisher = "Editrice Compositori s.r.l.",
number = "1",

}

Spin orbit correlations and the structure of the nucleon. / Avakian, H.; Parsamyan, B.; Prokudin, Alexey.

In: Rivista del Nuovo Cimento, Vol. 42, No. 1, 01.01.2019, p. 1-48.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Spin orbit correlations and the structure of the nucleon

AU - Avakian, H.

AU - Parsamyan, B.

AU - Prokudin, Alexey

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Extensive experimental measurements of spin and azimuthal asymmetries in various processes have stimulated theoretical interest and progress in the studies of the nucleon structure. The interpretation of experimental data in terms of parton distribution functions, generalized to describe transverse momentum and spatial parton distributions, is one of the main remaining challenges of modern nuclear physics. These new parton distribution and fragmentation functions encode the motion and the position of partons and are often referred to as three-dimensional distributions describing the three-dimensional (3D) structure of the nucleon. Understanding of the production mechanism and performing phenomenological studies compatible with factorization theorems using minimal model assumptions are goals of the analysis of the experimental data. HERMES and COMPASS Collaborations and experiments at Jefferson Lab have collected a wealth of polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. These data play a crucial role in current understanding of nucleon spin phenomena as they cover a broad kinematical range. The Jefferson Lab 12 GeV upgrade data on polarized and unpolarized SIDIS will have a remarkably higher precision at large parton fractional momentum x compared to the existing data. We argue that both experimental and phenomenological communities will benefit from the development of a comprehensive extraction framework that will facilitate the extraction of the 3D nucleon structure, help understand various assumptions in extraction and data analysis, help to insure the model independence of the experimental data and validate the extracted functions. In this review we present the latest developments in the field of the spin asymmetries with emphasis on observables beyond the leading twist in SIDIS, indispensable for studies of the complex 3D nucleon structure, and discuss different components involved in precision extraction of the 3D partonic distribution and fragmentation functions.

AB - Extensive experimental measurements of spin and azimuthal asymmetries in various processes have stimulated theoretical interest and progress in the studies of the nucleon structure. The interpretation of experimental data in terms of parton distribution functions, generalized to describe transverse momentum and spatial parton distributions, is one of the main remaining challenges of modern nuclear physics. These new parton distribution and fragmentation functions encode the motion and the position of partons and are often referred to as three-dimensional distributions describing the three-dimensional (3D) structure of the nucleon. Understanding of the production mechanism and performing phenomenological studies compatible with factorization theorems using minimal model assumptions are goals of the analysis of the experimental data. HERMES and COMPASS Collaborations and experiments at Jefferson Lab have collected a wealth of polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. These data play a crucial role in current understanding of nucleon spin phenomena as they cover a broad kinematical range. The Jefferson Lab 12 GeV upgrade data on polarized and unpolarized SIDIS will have a remarkably higher precision at large parton fractional momentum x compared to the existing data. We argue that both experimental and phenomenological communities will benefit from the development of a comprehensive extraction framework that will facilitate the extraction of the 3D nucleon structure, help understand various assumptions in extraction and data analysis, help to insure the model independence of the experimental data and validate the extracted functions. In this review we present the latest developments in the field of the spin asymmetries with emphasis on observables beyond the leading twist in SIDIS, indispensable for studies of the complex 3D nucleon structure, and discuss different components involved in precision extraction of the 3D partonic distribution and fragmentation functions.

UR - http://www.scopus.com/inward/record.url?scp=85062477963&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062477963&partnerID=8YFLogxK

U2 - 10.1393/ncr/i2019-10155-3

DO - 10.1393/ncr/i2019-10155-3

M3 - Article

AN - SCOPUS:85062477963

VL - 42

SP - 1

EP - 48

JO - La Rivista del Nuovo Cimento

JF - La Rivista del Nuovo Cimento

SN - 0393-697X

IS - 1

ER -