Abstract
Electronic phase transitions such as insulator-metal transitions are common in strongly correlated systems. Here, using a combination of thermodynamic linear-stability analysis and phase-field simulations and employing VO2 as a prototypical example, we predict that an insulator-metal transition driven by photoexcitation may involve an intermediate, modulated charge density state with a temperature-dependent characteristic wavelength. It is shown that such an intermediate two-phase electronic state is formed through a spinodal mechanism and that its formation can be generic for insulator-metal transitions driven by fast stimuli. This transient electronic phase separation is expected to stimulate future experimental and computational efforts.
Original language | English (US) |
---|---|
Article number | 195101 |
Journal | Physical Review B |
Volume | 102 |
Issue number | 19 |
DOIs | |
State | Published - Nov 2 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics